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1.0 INTRODUCTION

The Intrasystem Electromagnetic Compatibility Analysis Program
(IEMCAP) is a systems level, computerized analysis program which may be used
in analyzing electromagnetic compatibility (EMC) for aircraft, spacecraft or
ground stations on both present and future systems. The IEMCAP improvement
contract is sponsored by the Compatibility Branch (RADC/RBCT), Rome Air
Development Center, Griffiss Air Force Base, New York, under contract number
F30602-79-C-0169. The objective of this effort was to increase the prediction
capability of the IEMCAP. The defined tasks to obtain the new capability are
the following:
(1) development of a frequency dependent power gain
antenna model for IEMCAP;
(2) modify IEMCAP to predict the electromagnetic (EM)
interference for those devices whose compatibility
is not related to average powver,
(3) implement within IEMCAP a mathematical model(s) to
predict the degradation to receptors of EM energy,
caused by spurious signal products generated at an
emitter, a structural nonlinearity (i.e., in the
transmission path), or in a victim receptor (i.e.,
signal harmonics, intermodulation, cross modulation,
desensitization, gain compression/expansion and
spurious responses); and
(4) modification of the modeling procedure for a port's
R emisgion and/or susceptibility.

Upon completion of the above modeling effort, the developed models were to be

coded and interfaced with the existing IEMCAP.

Performance of modern weapuns systems is dependent upon the compat-
ible functioning of electrical and electronic subysystems. A typical system
includes numerous such subsystems with their associated interconnecting wires
and, often, with large numbers of antennas for transmission and reception of
required signals. The power and information signals occupy a wide range of the
electromagnetic spectrum, resulting in the need for carefully designed control
measures to confine them within the spatial, spectral, and temporal limits
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necessary to avoid disruptive interference. Electromagnetic Compatibility

(EMC) assurance is thus an integral and crucial part of subsystem and system
design engineering. Computerized EMC analysis, as provided by the RADC Intra-

system Electromagnetic Compatibility Program (IEMCAP) is a needed tool for
establishing and maintaining cost-effective interference control throughout

the lifetime of a weapon system.

! IEMCAP is a link between equipment and subsystem EMC performance

and total-system EMC characteristics. It provides the means for tailoring
EMC requirements to the specific system, whether it be ground based, airborne,

or a space/missile system. This is accomplished in IEMCAP by detailed model-
ing of the system elements and the various mechanisms of electromagnetic
transfer to perform the following tasks:
o Provide a data base which can be continually maintained
and updated to follow system design changes.
® Generate EMC specification limits tailored to the specific
system.
e Evaluate the impact of granting waivers to the tailored
specifications.
® Survey a system for incompatibilities.
® Assess the effect of design changes on system EMC.
e Provide comparative analysis results on which to base
EMC tradeoff decisions.

The RADC model is an environmental model in that it is designed
to predict interference in a population of receptors due to a population of

emitters. The basic medium for modeling signals is the frequency domain.

IEMCAP incorporates state-of-the-art communications and EMC
analysis math models into a routine which efficiently evaluates the spectra
and the transfer modes of electromagnetic energy between generators and

receptors within the system.

IEMCAP's combined capabilities provide a versatile framework
which facilitates modification as the state-of-the-art progresses., This

provides a flexibility in updating the program as new or improved mathe-

matical models are developed, and it provides a program which may be easily
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applied to a wide variety of EMC analysis and design problems by utilization

of only the necessary modules for the specific problem.

The program is designed for use by an EMC systems engineer with a
minimum of computer experience. The input data requirements, program control,
and output formats are easily learned and engineering oriented. The input
data is directly obtainable from system and subsystem operational specifica-
tions or measured data. For ease of use, all data input to IEMCAP is in

free-field format. The entries may be place anywhere on the punched cards.

The overall philosophy and basic analysis approach that had been
designed into the IEMCAP was maintained in the improved modeling development
effort on this c.atract. Each of the improved models and the associated
impact on the IEMCAP is discussed below.

In the original IEMCAP, antennas were assumed to be frequency
independent. Antenna gains were determined by preprogrammed equations for
low-gain types and medium and high gain were represented by multilevel
patterns, in which each level is specified by a gain and associated azimuth
and elevation beamwidths. Provision was made for three discrete gain levels,
which was assumed to be sufficient for representing most antennas. The
development of the proposed antenna model (Task 1) on this effort was based
largely on the results of theoretical antenna modeling. In many cases a
heuristic approach had been applied based on the personal experience of the
designer. There was a noticeable lack of empirical'antenna data available,
and a theoretical analysis would have been formidable. Further, antenna
theory is generally based on ideal assumptions which lead to uncertain limita-

tions in the results and must also be validated with measured data.

The problem of antenna modeling reduces to a tradeoff between
generality and accuracy. The more general a model becomes, the less accurate
it will tend to be in representing a wide variety of antennas. A specific
antenna may be modeled reasonably accurately if empirical data describing all
antenna characteristics to be modeled exist. If a model attempts to represent
all antennas of a given type, there can easily be found samples of that class

which do not agree with the model.
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Because of the wide degree of variations in the design and con-
struction of commercially available antennas of a given type or class, the
assessment of a general model for the type must be made in a statistical sense.
The accuracy of an antenna gain model will have a distribution which has,
hopefully, an acceptably low variance. Since the models are used for EMC
analyses, the mean values of gains should be adjusted toward the high side in
order to provide worst-case or some degree of safety in the predictions. This

arbitrary shift of the mean will increase the variance of the model error.

In consideration of the fact that the proposed antenna models have
not been validated, it was recommended that the models not be implemented
within IEMCAP. It was recommended that the proposed models be coded into a
stand-alone computer program which can be exercised in a validation study
using measurements of actual antennas. In some cases, the validation will
result in adjustments of model parameters, while in other cases, the measure-
ments may result in the need for redesign of certain models. Following some
period of validation and refinement in which the models demonstrate an
acceptable degree of accuracy, the entire model package can be implemented
within IEMCAP by replacing subroutine GAIN.

The system model for IEMCAP employs the standard EMC approach of
identifying all ports in the system having potential for undesired signal
coupling. These ports are divided into arrays of emitter ports and of
receptor ports having identifiable coupling paths.

All emitters in a system are characterized by emission spectra
and all receptors are characterized by susceptibility spectra. All ports and

coupling media are assumed to have linear characteristics. Emissions from

the various emitter ports are assumed to be statistically independent so that




signals from several emitters impinging at a receptor port combine on an

RMS or average power basis. Other waveform parameters that receptors may be
sensitive to are total energy, peak current (or voltage) and rise time. For

example, certain explosive devices are triggered by the burning away of a wire
(resistive heating). This is a total energy susceptibility. Also many
digital devices are susceptible to instantaneous waveform level ("peak"

sensitivity). EMI margins for each of the above has been developed for the
IEMCAP.

Each EMI margin for a particular waveform parameter is defined as
the ratio of parameter value induced at the detector input to the interference
threshold level for this parameter at the detector input. However, in all
cases this computation is transferred to the receptor input port where actual

measurements are more readily obtained.

An EMI margin of value greater than unity indicates interference.
A value less than unity indicates either compatibility or interference. A
minimization of the uncertainty, although the uncertainty is in uccordance
with the "worst case" philosophy of IEMCAP, has been considered in the choices
of the margins actually included in IEMCAP.

A number of important system level EMI problems result from non-
linear effects in emitters and receptors. At the present time, however, the
IEMCAP considers only interference caused by power transferred linearly from
emitter to receptor. To accurately predict all instances of possible EMI, it
was necessary to expand IEMCAP to include interference due to the following
nonlinear effects, which are recognized to cause system performance degrada-
tion:

1) Receiver Intermodulation

2) Spurious Responses

3) Corss Modulation

4) Desensitization

5) Gain Compression and Gain Expansion

This report documents the models developed to describe the effects enumerated
above.




Several important aspects associated with representing a port's
spectra were modified in the IEMCAP. IEMCAP is required to analyze a large
number of ports with reasonable run times and reasonable computer core memory

requirements. At the same time, it must quickly evaluate the coupling from

any type of emitter port into any type of receptor port and use this result
to perform the variety of tasks discussed above and be adaptable to future
tasks. For specification generation, the spectra must be easily adjustable

at the frequencies where incompatibilities are found as well as allow efficient

incorporation of the adjustments for further adjustment. For trade-off and
waiver analyses, the spectra and interference of modified ports must be ,

efficiently compared to those from previous runs. Also, the spectra are '

stored on files and thus becomes readily available for future analyses.

Based on the above criteria, the IEMCAP was designed to use a
sampled spectrum technique in which each spectrum amplitude is sampled at
i various frequencies across the range of interest. The new port spectra
algorithm replacing the current "quantization" method in IEMCAP for modeling
a port's spectra incorporates the following:

1) Generate Equipment Frequency Table

2) User Specified Frequency Range for Analysis
(0 to 50 GHz and greater)

3) User defined port spectra of up to 90 frequency -
amplitude points for required and/or nonrequired
frequency ranges

4) Generate frequencies and amplitudes for prestored

emitter and receptor models required by User's inputs

currently required by IEMCAP
5) Generate frequencies and amplitudes for harmonic !
signals as directed by User inputs currently
required by IEMCAP
6) Generate frequencies and amplitudes for any port's
non-required spectra using prestored MIL-STDS (461A,
6181D and 704) and the corresponding system dis~

placement factors.

—— -
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Basically, the above criteria for the new port spectra model
reduces to a requirement for generating all frequencies and corresponding
amplitudes for defining the port spectra of an equipment. The generation of
the equipment frequency table is accomplished by determining the required fre-
quencies from prestored models, harmonics, nonrequired frequencies from
appropriate MIL-STDS and user specified frequencies from IEMCAP input data.
The port spectra amplitudes are computed from prestored emittter and receptor

models, hhrmonics, user specified data and prestored military standards models.

It was recognized very early in the project that modification of a
considerable portion of IEMCAP would be required. Since the modification of
IEMCAP was so extensive, detailed flow diagrams were needed for interfacing
the new models. No detailed flow diagrams existed for the IEMCAP and so con-
siderable time and effort was devoted to developing the detailed flows before

interfacing the new models could be accomplished.

To interface the new models it was recognized and agreed that the
order of priotity for programming the new models should be 1) new port spectra
model (Task 4), 2) nonlinear effects models (Task 3), 3) nonaverage power re-
ceptor models (Task 2) and 4) new antenna models (Task 1). As a result of the
new user SPECT option associated with the new port spectra modeling, it was
determined that a significant change was required in the narrowband integrated
margin method used by IEMCAP. The integrated EMI margin is an overall figure
of merit representing the ratio of the po.2r received by the receptor to
susceptibility over the entire frequency range. The program as originally
designed computes the margin per bandwidth at all spectrum sample frequencies

(both emitter and receptor).

For narrowband emissions, the power received is independent of the
receptor bandwidth, and the integral becomes a summation. For the case where
a user specifies his narrowband spectra, the program performs the appropriate
summation. If the narrowband spectra are represented by prestored models,
then the narrowband components are comp'.ted as originally designed. A signi-
ficant effort was devoted to determining a technique that would be the most
beneficial to the IEMCAP user so as not to compromise his data. An appropri-
ate modification to the existing IEMCAP narrowband integrated margin model was
made. The implermentation of the modification to the narrowband integrated

margin calculation involved modifying several existing subroutines in IEMCAP.

1-7




}
!

e = = T At e =

A requirement on this effort was to minimize as much as possible
the amount of increase in computer main memory required to run IEMCAP. The
interfacing of the new models did in fact have an increasing effect on the
main memory requirements. Considerable effort was devoted to this require-
ment and to offset the increased main memory requirement, it was agreed that
the wire map portion of the data processing program (IDIPR) should be removed
and established as an independent program. Making the wire map function a
separate program accomplished 1) a reduction in the computer main memory
storage requirements and 2) provides a user more flexibility in analyzing

antenna-to-antenna coupling type problems.

The theoretical basis for each of the four tasks discussed above
are separate and distinct but, the integration of these tasks into the exist-
ing IEMCAP code were not handled independently. This report provides complete
and thorough information on the theory of the model development within each
task (separate sections devoted to each task) and the integration of the
developed models into the IEMCAP code is presented separately.

Section 2 presents the frequency dependent power gain antenna
models for the IEMCAP. The antenna gain model calculates tie power gain in
dB of a specified type of antenna at a given frequency and arbitrary direction
relative to the antenna axis. The model consists of four independent terms
which add (in dB) to provide the antenna gain. Section 3 treats the modi-
fication of IEMCAP to predict the electromagnetic interference for devices
in which the compatibility of the device is dependent upon parameters other

than average power. Several models are developed for other waveform para-

meters that receptors may be sensitive to. These parameters are related to

a susceptibility margin. The margins are numbers which indicate the level to

which specified unwanted emissions cause unexceptable receptor performance.

Sections 4 and 5 present further modifications to the IEMCAP.
Section 4 introduces the development of system level nonlinear models which
expands the capabilities of IEMCAP to allow predictions of performance degra-
dation for several nonlinear receptor effects. The models developed to
describe nonlinear effects are based on a "modified" Volterra Series which is

a hybrid technique combining aspects of both the Power Series and the Volterra
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Series. Effects which can not be described by the Volterra approach, due to

the nature of the nonlinearities involved, are based on empirical data.
Section 5 presents a new model which replaces the current "quantization"
method for modeling a port spectra. This new model provides the capability
for a user to model the required and nonrequired portions of an emitter and

receptor port spectra using the prestored models in IEMCAP.

The interfacing of the above models with the IEMCAP is presented
in Section 6. Where applicable the new models where integrated into the
existing IEMCAP. The overall philosophy of the IEMCAP has been maintained
and emphasis placed on segmenting the program to keep down computer main

memory requirements.
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FREQUENCY-DEPENDENT MODELING OF ANTENNA GAIN

It is desired to develop computer algorithms which provide the

numerical value of power gain (relative to that of an isotrope) for a

specified type of antenna at a specified frequency and spatial direction. The

power gain model is intended for use in program IEMCAP, replacing the relatively

I simple frequency independent model that currently exists.

' The words "antenna gain" immediately bring to mind the ideal of a
three-dimensional radiation pattern of lobes and nulls describing the spatial
radiation levels in azimuth and elevation from the antenna. Antenna theory

" books abound with antenna patterns that are derived for ideal, lossless antennas.
Peak values associated with these patterns are generally relative to a lossless
isotropic radiator. While radiation patterns are vitually important, they
represent only one of the terms to be considered in the overall power gain
model for antennas. In order to provide an absolute level of power gain, the
model must account for several types of power losses associated with real

- antennas which directly subtract dB's from the ideal radiarion pattern function

{ for the antenna. In many cases these power losses dominate.the performance of

: an antenna. Unfortunately, antenna textbooks seldom address this aspect.

’ The allocation of power delivered to an antenna system is diagrammed
in Figures 2-la and 2-1b. A conventional arrangement is assumed here. in which an
rf power source delivers power through a transmission line or waveguide to the
input terminals of the antenna. Since the antenna may generally have some kind

{ of feed circuitf& such as a balun, matching network, filter, multicoupler, etc.,
which is often an integral part of the antenna, particularly for commercially
manufactured antennas, the antenna terminals are assumed here to be the input to ; {
the feed circuit/antenna combination. The transmission line or waveguide 1is

! generally loséy ;nd reduces antenna power before it reaches the antenna terminals.
The second loss of antenna power is the reflection of power back toward the
source due to impedance mismatch between the transmission line and the antenna
terminals. Power which is absorbed by the antenna may be further degraded by

a) ohmic heating losses in the matching network and/or in dielectric materials

; associated with the antenna and by b) the effects of capacitive shunting between
conductors and between conductors and ground in the base feed circuits, particu-

! larly at frequencies considerably higher than the design band frequencies.
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The remaining power is that which is radiated into space, and it is this
final power level which applies to the radiation pattern function for the

antenna.

Consequently, the overall power gain function, alternately referred
to as antenna gain, consists of four terms. The first term is the trans-
mission line loss; the second is the impedance mismatch factor; the third is
due to internal losses of the antenna, and the fourth term is the radiation

pattern which gives the directive gain at specified angles in space.

When these terms are expressed as linear quantities, their product
gives the total antenna gain. If expressed logarithmically as dB's their sum
provides the total gain value,

For this study each of the terms is considered separately. This
report describes the analysis effort and presents the results of the proposed
models. The proposed models could be applied to active receiving antennas but
require separate consideration of the parameters for the receiving and trans-
mitting m.des, since these antennas are non-reciprocal. The nonlinear aspects

of active antennas are not considered in this study.

It should be noted that while the approach taken here is based on
the behavior of a transmitting antenna, the law of reciprocity ensures that

the same gain factors will apply when the antenna functions as a passive

receiver,
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2.1 Modeling the Impedance Matching Factor of Antennas

The power delivered to an antenna connected to a lossless trans-
mission line of characteristic impedance Z° at frequency f is determined from
the input impedance Zi of the antenna. First, the reflection coefficient r at
the antenna terminals is given by

zi-zo

Zi+Z0

r =

Since lr[ represents the fraction of forward voltage or current in
the line that is reflected at the antenna terminals due to impedance mismatch,
|r|2 represents the fraction of incident power P, reflected by the antenna
load. Thus, the fraction of incident power delivered to the load or absorbed

by the load (power radiated if the load is a lossless antenna) is

1o x)?

i
This ratio expressed in decibels is termed the impedance matching factor* F
That is,

2

Fz = 10 log l;—
i
=10 log(l-|r|2).

Note that when |r| = 1. .707, then %— = %.
V2 i

This corresponds to the half-power or -3 dB condition of the load.

The study analysis described here first considers dipole antennas
without feed circuitry, and this is followed with analyses of the effects of
matching networks on the power transfer characteristics of the dipoles over a
wide range of frequencies. Finally, the impedance matching factors for other

types of antennas are considered.

* Since P<Ps, then szp. Thus, the impedance matching factor as defined here

is always a negative quantity.
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2,2 Power Transfer Characteristics of a Dipole Without Feed Circuitry

Curves of the impedance matching factor for ideal dipoles over
a wide range of frequencies have been computed using the analytical approxima-
tion developed by Schelkunoff [la, Chap. X to 1lb, pages 421-432] for the input

impedance of ideal, lossless dipole antennas. Both the biconical and cylindri-
cal dipoles, illustrated in Figure 2-2, were studied.

A )

[}
[
A
L]
’
[
le

Conical Cylindrical

Figure 2.2 Conical and Cylindrical Antenna Shapes
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According to Schelkunoff's mode theory for dipole antennas, the

input impedance Z, is given by [la, pages 453, 460, 461].

i

R, sinkh + §[X_-N)sinkh - (K_-M)coskh]
17K, [{(K M) sinkh + (X_+N)coskh] -jR_coskh

where R_ = 60(Y+ 2n 2kh - Ci2kh)
+30(Y+ nkh - 2Ci2kh + Cidkh)cos 2kh
+30(Si4kh -2Si2kh)sin 2kh

; X_ = 60Si2kh -30(Y+ inkh -Ci4kh)sin 2kh
-30Si4kh cos 2kh

X
Six = I §13—5 du (sine integral)
()
< .
Cix = £O5 8 4u (cosine integral)
w U
(x
Note: Cinx = v + lnx -Cix = | l-cosu du
lo u
Yy = 0.5772... (Euler's constant)
k=2
A

For the conical dipole:

K =120 4n 2b
a a
M=0
N=0

For the cylindrical dipole:
K= 120 (2o 2B )
a a

M = 60(%n 2kh - Ci2kh + Y¥-1 + cos2kh)
N = 60(Si 2kh - sin2kh)

The apparent limitatfons of the above expressions are that a) the

conical angle is small such that tan Y=Y = ﬁ-[la, pages 446, 454), and b) the
length h < .75\ ([1b, page 426).

i
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The above expression for Zi was evaluated in a minicomputer for
conical and cylindrical dipoles of various h/a ratios over a frequency range
corresponding to electrical lengths from h=0 to h=3.3\A. The resulting curves
of FZ based on Z°= 50 ohms are presented in Figures 2-3 through 2-12 for the
conical dipole, and Figures 2-13 through 2-19 for the cylindrical dipole. Also
obtained from this study were plots of the complex input impedance or Smith
Chart coordinates for the same dipole conditions. The concial case is shown
in Figures 2-20 through 2-29, and the cylindrical case is presented in
Figures 2-30 through 2-39.

For the Smith Chart plots, the horizontal line represents the real
impedance axis with zero ohms (short circuit) at the left end, and infinite ’
ohms (open circuit) at the right end. At the center is the characteristic
impedance of the transmission line which was assumed to be 50 olms for all
calculations. The outer circle represents the reactance axis with inductance
along the upper semicircle and capacitance along the lower semicircle. Thus -¥
complex inductive impedances plot within the upper semi-circular region and
complex capacitive impedances in the lower semicircular region. The Smith
Chart is actually a polar plot of complex reflection coefficient. The outer
circle represents |t|= 1, and the center represents r = 0. The dashed circle
represents |r|= .707 or half-power level. Thus, all points within the dashed
circle correspond to an impedance mismatch that reflects leas than half the
incident power, and all points outside indicate reflection of more than half

the incident power.

The Smith Chart contours begin at the right edge where the impedance
is highly capacitive. The impedance generally spirals inward in a clockwise
direction with increasing frequency. All crossings of the contour with the
real axis represent points where the impedance is resonant or anti-resonant.

All crossings on the left side of the contour spiral are resonances where the

impedance is real and relatively low. These points correspond to the resonant

peaks in the curves of F All crossings on the right side of the contour

7
spiral are antiresonance points where the impedance 1s real and relatively
high. These points correspond to the nulls between the resonant peaks in the

curves of Fz.
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Figure 2-6 Impedance Matching Factor of Ideal Conical Dipole (h/a = 300)
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Figure 2-8 Impedance Matching Factor of Ideal Conical Dipole (h/a = 50)
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Figure 2-15 Impedance Matching Factor of Ideal Cylindrical Dipole (h/a = 1,000)
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Figure 2-16 Impedance Matching Factor of Ideal Cylindrical Dipole (h/a = 300)
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Figure 2-19 Impedance Matching Factor of ldeal Cylindrical Dipole (h/a = 20)

Figure 2-20 Smith Chart of Ideal Conical Dipole (h/a = 106)
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Figure 2-21 Smith Chart of Ideal Conical Dipole ( h/a = 104)
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Figure 2-22 Smith Chart of Ideal Conical Dipole (h/a = 1,000)
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Figure 2-24 Smith Chart of Ideal Conical Dipole (h/a = 100)
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Figure 2-26 Smith Chart of Ideal Conical Dipole( h/a = 20)
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Figure 2-28 smith Chart of Ideal Cylindrical Dipole ( h/a = 5)
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Figure 2-29 Smith Chart of Ideal Conical Dipole (h/a = 2)

Figure 2-30 Smith Chart of Ideal Cylindrical Dipole (h/a = 106)
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Figure 2-32 Smith Chart of Ideal Cylindrical Dipole ( h/a = 1,000)
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Figure 2-34 Smith Chart of Ideal Cylindrical Dipole (h/a = 100)
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Figure 2-35 Smith Chart of Ideal Cylindrical Dipole (h/a = 50)

Figure 2-36 Smith Chart of Ideal Cylindrical Dipole (h/a = 20)
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Figure 2-37 Smith Chart of Ideal Cylindrical Dipole (h/a = 10)

Figure 2-38 Smith Chart of Ideal Cylindrical Dipole (h/a = 5)
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Figure 2-39 Smith Chart of Ideal Cylindrical Dipole (h/a = 2)
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Since the calculations were performed at discrete frequencies
the contours as shown consist of a series of straight-line segments connecting
the data points. The computational increment has h/A= .0l or 1% electrical
wavelength. Consequently, in many cases it is possible to measure the 3-dB
bandwidth of a resonant peak by counting the number of line segments along the

contour as it passes within the dashed circle.

Analyses were performed to model the common features of the trans-
mission loss curves which will be significant for use in program IEMCAP. These
features are the following:

1. Multiple occurrence of resonant peaks.
2, Selectivity of each resonant peak.

3. Nulls between resonant peaks.

4., Infintte fall-off below first resonant peak.

The shapes of the transmission loss curves in the vicinity of the
first resonant peak were examined in detail in an attempt to find a simple
algebraic expression which would model the curves with a reasonable degree of
accuracy. Plots of the traﬁsmission loss on an expanded scale showing the
first resonant peaks are presented in Figures 2-40 through 2-49 for the conical
case, and Figures 2-50 through 2-59 for the cylindrical case. A natural choice
for the model is the resonance function for a series RLC circuit. The uni-

versal resonance curve [2, page 143] can be expressed in the form

r_\/ £ \]2
f T
ol -7

T

2]

where
I = input current at frequency f

I_. = 1input current at resonance f = fr
Q = circuit Q

f_ = resonant frequency
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Figure 2-40 Impedance Matching Factor of First Resonance
of Conical Dipole (h/a = 10%)
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Figure 2-41 Impedance Matching Factor of First Resonance
of Conical Dipole (h/a = 10%)
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Figure 2-42 Impedance Matching Factor of First Resonance
of Conical Dipole (h/a = 1,000)
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Figure 2-43 Impedance Matching Factor of First Resonsnce
of Conical Dipole (h/a = 300)
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Figure 2~44 Impedance Matching Factor of First Resonance
of Conical Dipole (h/a = 100)
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Figure 2-45 Impedance Matching Factor of First Resonance
of Conical Dipole (h/a = 50)
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Figure 2-46 Impedance Matching Factor of First Resonance
of Conical Dipole (h/a = 20)
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Figure 2-47 Impedance Matching Factor of First Resonance
of Conical Dipole (h/a = 10)
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Figure 2-48 Impedance Matching Factor of First Resonance
of Conical Dipole (h/a = 5)
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Figure 2-49 Impedance Matching Factor of First Resonance
of Conical Dipole (h/a = 2)
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Figure 2-50 Impedance Matching Factor of First Resonance

of Cylindrical Dipole (h/a = 10°)
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Figure 2-51 Impedance Matching Factor of First Resonance

of Cylindrical Dipole (h/a = 10%) "
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i Figure 2-53 Impedance Matching Factor of First Resonance
of Cylindrical Dipole (h/a = 300)
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Figure 2-54 Impedance Matching Factor of First Resonance
of Cylindrical Dipole (h/a = 100)
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Figure 2-55 Impedance Matching Factor for First Resonance :
of Cylindrical Dipole (h/a = 50)
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Figure 2-56 Impedance Matching Factor of First Resonance
of Cylindrical Dipole (h/a = 20)

Figure 2-57 Impedance Matching Factor of First
of Cylindrical Dipole (h/a = 10)
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! Figure 2-59 Impedance Matching Factor of First Resonance
of Cylindrical Dipole (h/a = 2)
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The power delivered to the circuit is Izg, if R is assumed to be

constant with frequency, we have
P |i%]_[12
P 2

LS 1 ,
r IrR Ii Ir t f 2
1+Q(T’f£>
r
where Pr=power delivered to the circuit at resonance.
2

Whep %;-= %3 we have QZ(%;-- ;%) =1
from which the following relationships can be derived:
Q=fr £ = /I £,
fz--f1 r 172
where fl = frequency below resonance at the one-~half power level.

fz = frequency above resonance at the one~half power level.

Let the circuit bandwidth be defined as

BW = fz-fl
so that £ ’
Q = B

The Q and resonant frequency of each of the curves in Figures 2-40

1 and fz.

The curve in Figure 2-59 for cylindrical dipole with h/a = 2 does not appear to be

through 2-58 were determined from the half power points associated with f

valid and was not included in this analysis. The theoretical antenna equations
appear to be unreliable for excessively low values of h/a. The universal
resonance function was then applied to four dipole curves presented in

Figures 2-60 through 2-63. The universal resonance curve is shown superimposed
on the theoretical transmission loss curve. The resonance value plotted is

P
Fz 10 log Pr

= -10 log [1 +Q2 (%;- ;Ej
As can be seen in these figures, there is not good agreement since
the universal resonance curve is above the dipole curve for frequencies below
resonance and is below the dipole curve above resonance in all cases shown.

This discrepancy is reasonable if one considers the antenna to behave as a

series RLC circuit in which the R is approximately proportional to fz.
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Figure 2-61 Comparison Between Theoretical and Model Curves

of Impedance Matching Factor at First Resonance
(Cylindrical, h/a = 10°)
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Figure 2-63 Comparison Between Theoretical and Model Curves
of Impedance Matching Factor at First Resonance
(Cylindrical, h/a = 100)

2-40

b




Accordingly, the Q of the antenna increases as frequency drops below resonance.

Since Qr may be expressed as

X
e = R
where X = inductive or capacitive reactance of a series RLC circuit,
let , X
¢ = xr
where 2
R' =(§—) R.
T,
Then, f 2
r
Q' =(%— Q

With Q replaced by Q' in the universal resonace function, we have

the following modified resonance function.

R

The values from this function are shown plotted on Figures 2-60 and 2-61 and indi-

cates over-correction. The correction is in the proper direction but is nearly
double of that needed. A modification using
f
Q' = £ Q
was then tried, and the results shown in Figures 2-60 through 2-63 appear to give

excellent agreement. Thus, the modified universal resonance function found to

model the selectivity of the first resonant peak of dipole impedance matching

factor is
P, 1
Pr 2
fr t f
e -1
r
= p 4
fs
2 r
1+Q l—(f—-
2-41
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! This same function tested down to a dipole half-length h = A/60

for several high and low Q samples of first resonant peaks is shown in Figures 2-64
through 2-69. As can be seen, the function agrees well with the theoretical

impedance matching curves down to levels less than -50 to -60 dB. It is

4 i reasonable to accept this function for modeling the impedance matching of a

dipole down to DC (or a practical limit of 1 Hz).

Additional tests of this function for modeling resonant peaks of
higher order were made for various high and low Q dipoles. ihe function was
applied directly to each peak curve without shifting the frequency coordinate,
but since the higher order resonant peaks generally drop below the 0 dB axis,
the value of FZ given by the function was offset by the value of the resonant
peak. That is, given fr’ Q and Fz[max]i = peak value of Fz at f=fr for the
ith resonant peak, the model curve computed for fr and Q was shifted downward by
Fz[max]. It was found that the degree to which the empirical function fit a
theoretical resonance curve was highly sensitive to the specific value of Q
measured for the curve. Since Q is determined from estimates of the 3-dB bandwidth

i measured relativé to the level of the resonant peak, it was found necessary to i

re-calculate the resonant peaks of FZ with a high degree of resolution. These

' data permitted an accurate determination of the peak value Fz[max], center fre-
| quency fr’ the Q, and bandwidth BW = fz-fl. The results are presented in

Table 2-1. The frequency scale is arbitrary: however, for convenience, it was

scaled to one unit per h/A = 1/60 (each tic mark in the high resolution plots,

i
:
e

e.g., Figures 2-40 to 2-69, or h/A = 1/6 per tic mark in low resoltution plots,
e.g., Figures 2-3 to 2-19.

Various samples of the model function plotted at high-order

resonant peaks are presented in Figures 2-70 through 2-85. 1In general, the model-

ing is good at the peaks and at the upper parts of the selectivity skirts, but
falls below the skirts in the lower regions. On the low-frequency side, the
model agrees well down to a level (in dB) of one-half or two-thirds of the
null depth, whereas on the high-frequency side the agreement is good only
above the one-third to one-~half null depth level., Some of this discrepancy in

the lower skirt region can be overcome by using a model curve with a lower Q.

- ———— —

As will be shown, however, the resonant peaks will, in fact, require modeling

t at wider bandwidths than shown.

)
)
i
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L Figure 2-64 Comparison Between Theoretical Transmission Loss
and the Model at First Resonance (Conical, h/a = 10%).
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Figure 2-65 Comparison Between Theoretical Impedance Matching Factor
and the Model at First Resonance (Conical, h/a = 100)
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Figure 2-66 Comparison Between Theoretical Impedance Matching Factor
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and the Model at First Resonance (Conical, h/a = 10)
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! Figure 2-67 Comparison Between Theoretical Impedance Matching
Factor and the Model at First Resonance
(Cylindrical, h/a = 10%)
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Figure 2~-68 Comparison Between Theoretical Impedance Matching
Factor and the Model at First Resonance
(Cylindrical, h/a = 100)
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2-69 Comparison Between Theoretical Impedance Matching
Factor and the Model at First Resonance
(Cylindrical, h/a = 20)
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Table 2-1
s Calculated Quantities of Dipole Resonant Peaks
i
{ Antenna Peak No. fr __BW Q F_Imax](dB)
Conical6 1 14.21 1.174 12.10 - .06
(h/a=10") 2 44.27 1.501 29.50 - .48
) 3 74.29 1.640 45.31 - .71
! 4 104.30 1.730 60.28 - .86
i 5 134.31 1.798 74.71 - .93
: 6 164.31 1.842 89.21 -1.07
) Conical 1 13.60 1.97 6.89 .00
; (h/a=1000) 2 43.70 2.59 16.89 - .38
3 73.74 2.83 26.05 - .63
4 103.76 2.98 34.79 - .79
5 133.78 3.09 43.27 - .91
6 163.79 3.17 51.59 -1.00
Conical 1 13.12 2.55 5.15 - .02
(h/a=100) 2 43.24 3.44 12.57 - .32
3 73.29 3.77 19.42 - .57
4 103.33 3.98 25.97 - .74
5 133.35 4.12 32.35 - .86
6 163.36 4.23 38.59 - .96
Conical 1 12.55 3.23 3.89 - .12
‘ (h/a=20) 2 42.61 4.55 9.37 - .26
{ 3 72.67 5.04 14.42 - .51
% 4 102.71 5.32 19.29 - .63
i 5 132.73 5.52 24.03 - .81
6 162.75 5.67 28.69 - .91
Cylindrical 1 14.77 1.43 10.34 - .13
(h/a=105) 2 44,74 1.86 24.03 - .50
3 74.74 2.07 36.17 ~ .69
4 104.73 2.20 47.61 - .81
5 134.73 2.30 58.51 - .90
6 164.73 2.39 69.03 - .97
Cylindrical 1 14.58 2.86 5.09 - .09
(h/a=1000) 2 44 .49 3.91 11.38 - .39
3 74.47 4.40 16.92 - .55
4 104.45 4.73 22.07 - .65
t 5 134.44 4.98 27.01 - .72
6 164.43 5.18 31.77 - .77
Cylindrical 1 14.45 4.30 3.36 - .05
(h/a=100) 2 44,21 6.26 7.06 - .29
3 74.09 7.28 10.18 - .41
4 104.00 7.99 13.02 - .49
3 133.91 8.56 15.65 - .55
6 163.83 9.04 18.12 - .59
H 2-46
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Figure2-70 Comparison Between Theoretical Impedance Matching
Factor and the Model at Second Resonance
(Conical, h/a = 10°)
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Figure 2-71 Comparison Between Theoretical Impedance Matching 1
Factor and the Model at Third Resonance
(Conical, h/a = 10%)
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&) = Modified resonance function
model

R
» Figure 2-72 Comparison Between Theoretical Impedance Matching
Factor and the Model at Fourth Resonance
(Conical, h/a = 10°)
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Figure 2-73 Comparison Between Theoretical Impedance Matching

Factor and the Model at Fifth Resonance
(Conical, h/a = 10%)
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Figure 2-74 Comparison Between Theoretical Impedance Matching
Factor and the Model at Sixth Resonance
(Conical, h/a = 10°)
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Figure 2-75 Comparison Between Theoretical Impedance Matching
and the Model at Second Resonance
(Conical, h/a = 1,000)
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Figure 2-76 Comparison Bewteen Theoretical Impedance Matching
" Factor and the Model at Sixth Resonance
(Conical, h/a = 1,000)
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Figure 2-77 Comparison Between Theoretical Impedance Matching
Factor and the Model at Second Resonance
(Conical, h/a = 100)
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Figure 2-78 Comparison Between Theoretical Impedance Matching
Factor and the Model at Third Resonance
(Conical, h/a = 100)
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i b Figure 2-79 Comparison Between Theoretical Impedance Matching
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r ® <@ = Modified resonance function
model
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- Figure 2-80 Comparison Between Theoretical Impedance Matching
Factor and the Model at Second Resonance
(Cylindrical, h/a = 10°)
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S 2 Figure 2-81 Comparison Between Theoretical Impedance Matching
Factor and the Model at Third Resonance
(Cylindrical, h/a = 10%)
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- . @) = Modified resonance function
model

3ot Figure 2-82 Comparison Between Theoretical Impedance Matching
‘ Factor and the Model at Sixth Resonance
; (Cylindrical, h/a = 10°)
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sl Figure 2-83 Comparison Between Theoretical Impedance Matching
Factor and the Model at Second Resonance
(Cylindrical, h/a = 1,000)
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Figure 2-85 Comparison Between Theoretical Impedance Matching
Factor and the Model at the Sixth Resonance
(Cylindrical, h/e = 1,000) h
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Composite plots of model curves for the first six resonant pezks
are shown in Figure 2-86 for a high-Q dipole and in Figure 2-87 for a low-Q dipole.
The most significant aspect seen in these figures is the inability of the model
function to model the null regions well between resonant peaks. This must be
handled with a separate function. It is noted that the first resonant peak is
modeled best. In particular, the upper skirt of the first peak is modeled
better than that of any higher order peak. It may be desirable to apply the
model function to the higher peaks by shifting the origin of the model curve
upward in frequency from the first peak. This could improve modeling of the

upper skirt of each peak, but is appears that agreement with the lower skirt
would suffer.

It has been demonstrated that the modified universal resonance
function appears to provide a reasonable model for the first six resonant
peaks of FZ for an ideal dipole. The model function must be applied inde-
pendently to each peak with a specific center frequency and bandwidth or Q.

In order to accomplish this, it is necessary to determine appareant functional

re®lationships between the resonant frequencies and bandwidths of higher order

peaks given the center frequency and bandwidth of the first resonant peak for

high and low Q dipole antennas. The data presented in Table 2-1 were examined
in detail to develop these relationships.

a. Resonant Frequencies

Let fn and Qn (n=1,2,3...) denote the resonant frequency and Q of
the nth resonant peak, respectively. The differences between successive
resonant frequencies for each antenna type given in Table 2-1 were calculated.
These differences divided by fl were found to be constant for the higher order
resonances of each antenna. Consequently, an expression giving the nth
resonant frequency in terms of the normalized frequency separation A'(fi-fi_ly51
is

fn - f1[1+(n-l)A],
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Antenna Normalized Spacing, A
CoNICAL (10°) 2.11
CONICAL (1,000) 2.21
CONICAL (100) 2.295
CONICAL (20) 2.395
CYLINDRICAL (106) 2.03
CYLINDRICAL (1,000) 2.05
CYLINDRICAL (100) 2.065

These values indicate that, in general, the relative spacing between
resonant peaks is slightly more than twice the first resonant frequency. Since
A decreases with increasing antenna Q (of the first resomance) for the conical
and cylindrical dipoles considered separately, A was plotted against log Ql as
shown in Figure 2-88. The values of A are significantly different for the twn
types of dipoles. The reason for this is unknown at this time, and it will be

necessary to accept the spread in the values of A for a specified Ql.

Lest it be assumed that for a given Ql’ the value of A can range
from 2.00 to the value given by the conical curve in Figure 2-88. An empirical
curve fit to the conical values results in the following:

A = 2.00 + 1.829, " 1+113

1
b. Bandwidths of Resonant Peaks

The 3 .dB bandwidths given in Table 2-1 are shown plotted in Figure 2-89.
Although the bandwidth values exist through the points in order to describe the
functional relationship. As can be seen, the resonant bandwidths increase

nearly linearly with log frequency.

These same data normalized to fl (first resonant frequency) for
each antenna are listed in Table 2-2 and plotted in Figure 2~90. Since the curves
appear to converge to a single point, it is possible to develop an expression
to represent the curves given the bandwidth of the first resonance. This
general function could be used for all monopole and dipole antennas since the
only parameter required is the first resonant bandwidth. The independent
variable is the center frequency of higher order resonances. As shown in (a)

above, these frequencies cannot be predicted precisely for any given antenna,
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Table 2-2 !
{ Normalized Resonant Frequencies and Bandwidths T‘
; Antenna Peak No. fn/fl Bw/fl
1 con(10%) 1 1.00 .0826 |
, 2 3.12 .1056
‘ 3 5.23 .1154
‘ 4 7.34 .1217
i 5 9.45 .1265
{ 6 11.56 .1296
L ! con(103) 1 1.00 .1449
a 2 3.21 .1904
., 3 5.42 .2081
' 4 7.63 .2191 -
i 5 9.84 .2272 P
i 6 12.04 .2331 :
: CON(100) 1 1.00 .1944
2 3.30 .2622
3 5.59 .2873
4 7.88 .3034
5 10.16 .3140
6 12.45 .3224
CON(20) 1 1.00 .2574
2 3.40 .3625 L
3 5.79 .4016 i
4 8.18 .4239 l
5 10.58 .4398
6 12.97 .4518
* cyL(10%) 1 1.00 .0968
2 3.03 .1259
3 5.06 .1401 ;
4 7.09 .1490
5 9.12 .1557
6 11.15 .1618
cyL(10%) 1 1.00 .1962 i
2 3.05 .2682 ,
3 5.11 .3018
4 716 .3244
5 9.22 .3416
6 11.28 .3553
CYL(100) 1 1.00 .2976
2 3.06 .4332
. 3 5.13 .5038
4 7.20 .5529
5 9.27 .5924
6 11.34 .6256

—
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but have a range of values based on A ranging from 2.00 to the value given by
the expression in (a). Modeling the higher order resonances while taking

into account this spread in resonant frequncies is accomplished as follows.
The bandwidth of any resonant peak must be increased by an amount equal to the
spread of possible resonant frequencies for the peak. In this manner the
modeled bandwidth contains the bandwidth of a resonant peak occuring at any
frequency within the assumed range. Figure 2-91 illustrates this process.
Curve A represents a resonant peak occurring at frequency fa calculated with

A = 2.00. Curve B represents the same resonant peak occuring at frequency fb
calculated with the upper limit of A. The 3-dB bandwidth BW is assumed the
same for both peaks. Since the 3-dB level of the resonance curve can range
between frequencies fl and fh’ the bandwidth BW' of the model peak is set equal
to this range. The resulting curve is therefore wider (of lower Q) than the
theoretical curve but provides worst-case protection of the impedance matching

factor for an IEMCAP analysis.

These calculations have been performed using the data in Tables 2-1
and 2-2 for the conical dipoles. The resulting values in Tables 2-3. The Q of
each model peak has also Been calculated and is shown plotted as a function
of normalizéd redonant frequency in Figure 2-92. This figure, then, shows the
family of curves to be used by the model to provide the Q of a resonant peak
at any given normalized frequency for a specified Q of the first resonant

peak.

An empirical expression has been developed to fit the curves in
Figure 2-92. Each of the lines is assumed to be straight, and their slightly
different slopes are assumed to be the same. The expression is of the form

y = mx+b
where y = log Q

m = 0,115

f
x = log (?9)
1
b = log Ql'
The complete expression is £
log Q, = 0.115 log (f—n)+log Q
1
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h

U = -
BW BW+(fb fa)
fr = ¥ fth

Figure 2-91 Illustration of Normalized Bandwidth Spread
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Table 2-3
Bandwidth Spread*

¢ Antenna Peak No BW fh'fa BW' fn Qn **
: CON(106) 2 .1056 .1129 .3185 3.055 13.98
(Q1=12. 10) 3 .1154 .2258 L3412 5.110 14.98
4 .1217 .3388 L4605 7.166 15.56
5 .1265 .4517 .5782 9.221 15.95
6 .1296 .5646 .6942 11.277 16.24
con(10%) 2 .1904 .2116 4020 3.101 7.71
(0y=6.89) 3 .2081 4231 .6312 5.203 8.24
4 4 .2191 6347 .8538 7.306 8.56
; 5 .2272 -8463 1.0735 9.408 7.76
6 .2331 1.0579 1.2910 11.511 8.92
{ CON(100) 2 .2622 .2927 5549 3.137 5.65
: (04=5.15) 3 .2873 .5854 .8727 5.277 6.05
4 .3034 .8781 1.1815 7.417 6.28

5 .3140 1.1708 1.4848 9.558 6.44 ;

6 .3224 1.4634 1.7858 11.699 6.55

CON(20) 2 .3625 .4002 .7627 3.182 4.17 :

(03=3.89) 3 .4016 .8004 1.2020 5.370 4.47 :

4 .4239 1.2006 1.6245 7.560 4.65 i

5 .4398 1.6008 2.0406 9.750 4.78 ;

6 4518 2.001 2.4528 11.940 4 .87 !

.

* Values are normalized to fl.

f
n

Rk - ——
% = W
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Figure 2-92 Q of Spread Resonant Peak Vs Normalized Resonant
Frequency
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The normalized frequencies at which the higher order resonances
occur, given in Table 2-3, have also been generalized. The frequency differences
between successive peaks have been calculated for each antenna case in Table 2-3
and are remarkably constant for each antenna. The average differences,

corresponding to A described in Figure. 2-88, are the following:

Q1 of First Resonance A
12.10 2.055
6.89 2.102
5.15 2.140
3.89 2.188

An empirical curve fit to these values is the following:

A = 2+0.81780,"1-083
This expression is to be used in the model to provide the nth resonant fre-
quency fn.

fn = f1[1+(n-1)A]

Thus, for given values of fl and Ql of the first resonant peak of any simple
monopole or dipole antenna, the resonance curves are defined by the above
three expressions for resonant peaks of order n.

c. Decay of Resonant Peaks with Frequency

The theoretical curves of impedance mismatch factor as shown in
Figures 2-3 through 2-19 generally indicate a rather slow decay or fall-off of the
resonant peaks with frequency. This decay is too slight to be significant and
is ignored in the model.

The Smith chart plots of these data (Figures 2-20 through 2-39)
generally indicate that the impedance contour spirals inward toward an
asymptotic point near the dashed circle or 3-dB loss level. Consequently, the
peak decay would eventually drop to no more than about -3 dB, which is not a
signifircant level for modeling this feature of the impedance mismatch factor.
Further, measured data indicate very little decay of higher order resonances,

as will be shown.
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d. Null Depth

The minimum impedance mismatch factor occurring between resonant
peaks is an important feature to be included in the model. Two aspects of null
depth are evident. First, the depth of the first null (between first and
second resonance) must be defined, and second, the decay of null depth with

frequency should also be defined.

The depth of the first null is shown plotted against log Q1 in
Figure 2-93 for each case of the conical and cylindrical dipoles. As can be
seen, the relationship is nearly linear. A curve fit to the cylindrical data
line gives the following:

FZ = 3.6-21.1 log Q1

The relationship of the higher order nulls is an exponential decay
with log frequency. The theoretical values of null depth for the conical
(h/a = 106) dipole (Figure 2-3) were used to examine the null decav. An
empirical fit to these data points gives the relationship

h
FZ -3-13.9 (A)-0'124

A more desirable form of this relationship is an exponential form given by
-0.288(1log £/£f*)

Fz = -3-16.53¢ !

where f' = frequency at which h=A/4, and the logarithm is base 10.

For the present, the expressions for null depth will be given in
general form with unspecified constants. It appears, after examining measured
antenna data, that the null depth is not as much as the theory predicts and
the decay rate is considerably greater than that given above. Apparently, null
depth is sensitive to several aspects of real antennas which were not accounted

for in the theoretical model, e.g., losses, imperfections at the feed point,

nonaxial directed currents, and nonrotationally symmetric currents.
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2.3 ifeasured Data of Resonant Antennas

It is essential that the measured performance of antemnnas at
out-of-band frequencies be studied during model development. Theoretical
analyses of antennas generally do not predict performance characteristics very
realistically, particularly at frequencies well outside the design band. The
assumptions usually made in analyses minimize the error within the design band
but often cause significant properties to be overlooked at frequencies out-of-
band. The assumptions most commonly made are that the antenna is lossless,
the current distribution is rotationally symmetric, and the current flow (in a
linear antenna) is axial (the element is thin). The use of baluns with many
antennas is commonplace: however, theoreticians seldom include baluns in their
antenna models. Although a wide variety of balun designs exist for transform-
ing an unbalanced line (e.g., coaxial cable) to a balanced line (e.g., dipole),
they cannot be ignored as a part of the antenna. Wideband baluns, such as a
transformer with primary and secondary windings, probably- have the least
effect on the out-of-band performance of antennas. Many baluns, however, are
frequency selective and require tuning to the operating range of the antenna.
These types of baluns are essentially transparent at frequencies in the design
band, but they can have considerable effect on input impedance at frequencies
outside the design band. Where a balun is used, it should be considered as
being an integral part of the antenna and be included within the antenna

terminals.

It should be clear that a balun is not principally a matching net-
work for matching a reactive antenna impedance with 50 ohms. The majority of
baluns transform 50-ohm unbalanced to 50-ohm balanced lines. Some baluns,
however, do transform a 50-ohm impedance to some integral multiple of 50 ohms.

The effects of matching networks are studied in the next section.

Unfortunately, measured out-of-band frequency data for antenuas
are very sparse in the technical journals. Figures 2-94 through 2-102 present
curves of impedance matching factor derived from measured data for various
types of single element resonant antennas. Several of the measurements were
published, but most of the data were measured by ARC. The principal features

to be derived from each of these results are described below.
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Figure 2-94 presents the impedance matching factor of a model
‘cylindrical monopole 0.25" diameter and 6" high over a ground plane, giving an
: h/a ratio of 24. [3, pages 86, 87] Apparently, no feed circuitry or balun was

required, as expected. The curve illustrates the predicted resonant peaks

with a frequency spacing of about 2.0f1. Unfortunately, no data were taken
below fl to give a measure of Ql’ Comparing this curve with that of Figure 2-19
for a cylindrical dipole of h/a=20, the depth of the first null is nearly twice
that predicted by the theory. The second, third and fourth nulls are that

reasonably close to the theoretical depth of -4 dB. For the measured case,

the resonant peaks rise with frequency, and secondary resonances appear as

seen in the minor peak between the fourth and fifth resonant peak. It is
suspected that the feed connection created some high frequency effects. In all,
the antenna is not very lossy at any frequency shown above the first resonance
to 10f1. The impedance matching factor tends to increase as the frequency

increases.

Figure 2-95*presents P, for a horisontal dipole having a tunable
balun. The resonant frequency was set to 400 MHz. The second and third
resonant peaks occur at the expected frequencies, but the behavior above the
third peak is unpredictable. This is most likely due to the properties of the
balun. Based on h/a ratio of 20 to 30 for this dipole, the depth of the first
null is twice the theoretical value (see Figures 2-18 and 2-19). The depth of the
second null agrees with theory. The Q of the second peak is nearly twice that

of the first peak, which agrees with the theory.

Figure 2-96*shows the F, curve of another small, horizontal dipole

Z
tuned for approximately 400 MHz. This dipole has a bazooka balun which is ;

also tunable. The measurement, made only to Sfl, show the first and second

resonant peaks. The behavior above the second peak is unpredictable. The null
depths are deeper than theory would indicate, which is due probably to fre-

quency selective properties of the balun.

* Test antenna measured by ARC.
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Figure 2—97*presents F, of a broadband bow-tie (dipole) antenna

having a broadband transformer-couile balun. Each element of the antenna is
a flat piece of copper having the shape of the profile of a conical dipole
with an apex angle of 70°. The design band was intended to be 180-600 MMz,
but the curve indicates good impedance up to about 2 GHz. The shape of the FZ
curve for this antenna does not agree with the theory used and will require

special considerations for modeling.

Figure 2-98*presents the Fz data for a commercial biconical dipole
constructed of aluminum tubing in the form of a conical cage. The shape of
the elements is more accurately described as being duoconical with the transi-
tion planes located about 2/3 h from the center. This antenna contains a
coiled-cable balun in the feed box. The design frequency range is 88-130 MHz,
As can be seen FZ is very erratic and does not appear to agree with theory.

The cone angle is 70°. The maximum loss measured, however, was about 7 dB.

Figure 2-99 presents the results of an interesting study to design
a broadband monopole. [4] The shape is duoconical with the transition plane
at about .22 from the base. The transition corner was rounded to provide a
smooth, teardrop shape. As can be seen, the antenna is remarkably good from
500 or 600 MHz to at least 1400 MHz. The shape of the curve does not agree
with the results given for the conical or cylindrical types. This duoconical
shape, however, is principally academic at this time, and does not appear to

be used in practice.

Figure 2-100 and 2-101 show Fz of two sleeve (monopole antennas, [5])
Both antennas have an overall height of 30 inches corresponding to the center
conductor. The sleeves are 4 inches in diameter. The sleeve length is 6"

for Figure 2-100 and 24" for Figure 2-101. In both cases it appears the first
resonance occurs at~ 2f1 as predicted for a monopole. The length of the

sleeve apparently affects the relative amplitudes of the resonant peaks and

the depth of the first null.

* Test antenna measured by ARC.
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Figure 2-102 1llustrates F, for a commercially manufactured sleeve

' monopole. The overall height is 28 inches above a counter-poise. The height

of the sleeve is 15 inches and is 3 inches in diameter. The curve shows a

first resonant frequency at about 130 MHz. Higher order resonances, however,

i appear to occur at every odd multiple of 100 MHz all the way to 2100 MHz (fll)'
| Thus, the higher order resonances are periodic based on a first resonant fre-

; ‘ quency of 100 MHz. The reason for the discrepancy between the 100 and 130 MHz
é ' resonance is not known. The null depths are erratic, but the maximum loss is

; less than 7 dB.

2.4 Power Transfer Characteristics of a Dipole
With a Matching Network

When a dipole or monople operates at its natural resonant frequency,
the terminal impedance is sufficiently close to the characteristic impedance
of standard coaxial cables to permit the antenna to be connected directly to a
cable with little loss due to reflected power. In many cases, however, a
resonant type of antenna is required to operate at a frequency above or below
its natural resonant frequency. As a result, the impedance of the antenna
element is reactive and no longer matches the characteristic impedance of the
transmission line. In order to minimize power transmission loss due to re~ i 1
flection at an impedance mismatch, a matching network is inserted into the
line as close as possible to the antenna. A properly matched antenna prevents i

the reflection of power in.either direction. For a transmitter, the network ' 3

prevents power reflections back into the transmitter. For a receiving antenna,

the matching network prevents power reflections back into space. f

The function of a matching network may be viewed in different

ways. The network is normally considered to be an impedance transformer that
transforms the an.c¢nna or load impedance into the characteristic impedance of ) ;
the connecting transmission line. It may also be viewed as a network which

causes the antenna to appear to be resonant at the operating frequency and, ‘ i
thus, provide a non-reactive impedance which is adjusted to match the character-

istic impedance of the transmission line. Consequentyly, matching networks

are usually highly reactive and generally consist of low-loss inductances

and/or capacitances. Since a matching network is resonant with its antenna

il
at the matching frequency, currents and voltages within the network and i
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between the network cannot be avoided and are usually minimized with special
construction techniques. Assoclated with a matched antenna is a Q of the
circuit at the resonant or matched frequency. Thus, in general, the bandwidth
and efficiency of a matched antenna is limited primarily by the properties

of the matching network.

Because matching networks generally have a very significant effect
on the frequency characteristics of the overall antenna impedance, any matching
circuitry associated with an antenna should be considered as an integral part
of the antenna. As with most commercially manufactured antennas that contain a
matching circuit, the circuit is sealed within the antenna structure =o that it
is not possible to physically separate the network from the radiating elements
of the antenna. The design and construction of such antennas is usually pro-
prietary, and information relating to the individual components with the
antenna structure is generally not available. The published specifications
for the antenns which meet certain standard requirements are based on measure-
ments of the terminal impedance of the total antenna/matching network/ balun
circuit. Consequently, the purpose of the present analysis is to determine
characteristics of the transmission loss which appear to be common to a wide

variety of matching conditions for purposes of modeling.

A very common design restraint for antennas is that they must be
physically small. This is particularly true with aircraft antennas where the
required dimensions of the antennas are often considerably less than one-half
or one-fourth of a wavelength. This results in antenna elements which are
electrically short and not capable of resonating at the required operating
frequencies. Various techniques to lengthen the antenna electrically are
usually applied, such as capacitive end loading or dielectric loading. Where 3
these effects are insufficient to achieve natural resonance, the resulting
impedance must be matched with appropriate circuitry to the standard character-~

istic impedance - e.g., 50 ohms - of transmission lines.

Consequently, matched antennas predominantly operate at fre-
quencies below the natural resonant frequency of the antenna elements. As a
result, the impedance of the antenna elements generally consists of a relatlively
small resistance and a large capacitive reactance. To match this impedance

condition the matching network must contain at least one inductive reactance.
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At radio frequencies reactive elements can be achieved either with lumped
elements or with transmission line techniques (e.g., shorted stub, waveguide
tuning techniques). In this report the frequency properties of dipole antennas
matched by both methods are considered. Curves of the impedance matching
factor for a wide range of frequencies outside the design range of the matched
antenna are presented. The design frquency range of a matched antenna is the
range over which the antenna (with its matching network) is designed to be
reasonably well matched to the transmigsion line. All frequencies outside

this range are considered to be out-of-band. Note that, in general, for a
matched antenna, the natural resonant frequency of the antenna element is

out-of-band.

2.5 Impedance Matching Characteristics of Antennas

Matched with Lumped Elements

The simplest form of a matching network is an L-pad consisting of
two reactive elements: one series and one shunt. Table 2-4 lists the six
possible kinds of L-pads shown matching a capacitive load impedance Za =

Ra+j Xa. The input impedance Z, of the entire circuit is shown along with

in

expressions giving values of the matching elements to provide 2, = Ro at a

resonant frequency corresponding to specified values of Rz and ;: of resonance.
The transmission loss curves of dipole antennas for various matching

conditions have been calculated. Schelkunoff's equations for the cylindrical

dipole were used to provide tke dipole impedance, and matching was modeled

using Types I and II networks (shown in Table 2-4). A thin dipole (h/a=106) and

a fat dipole (h/a=20) were studied for the matched frequencies corresponding

to h/A=0.1, 0.15, and 0.2, where the dipole has a natural resonance near
h/A=,25. The thin dipole was also studied at a matched length of h/A=.23,
which is slightly below the natural resonance of h/A=0,246. The results are
presented in Figures 2-103 through 2-116.

The numerical values used for each of the matching networks are
listed in Table 2-5. I

The lumped constants of the matching circuits were assumed to be
ideal for this study.
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Table 2-4 Two-Element Matching Networks For Antennas
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(h/a = 10°) Matched with LL Network for Resonance at .15 h/A
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Figure 2-108 Impedance Matching Factor of Cylindrical Dipole
(h/a = 10°) Matched with LL Network for Resonance at .2 h/A
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Table 2-5

Reactance Values of Matching Network Elements at Resonance

Dipole: Cylindrical (h/a = 106)

Resonant Dipole Z Type 1 Type 11
Length At Resonance XL Xc X X2
.10 7.68 - j2113 1518 5391 3475 5391
.15 19.0 - jl104 683 1791 2878 1791
.20 38.9 - j474 252 537 4018 537
.23 57.5 - j159 76.7 148 2197 148

Dipole: Cylindrical (h/a = 20)

Resonant Dipole Z Type 1 Type 11

_Length At Resonance XL XC X1 X2
.10 5.74 - j344 257 1015 520 1015
.15 15.34- jle69 109 305 379 305
.20 35.0 - 354.93 44 64 336 65.6
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The most notable finding seen with these curves is the fact that
higher order resonances can still occur with a matched antenna. In particular,
for Type I matching all higher order resonances of the dipole occur as though
the matching network did not exist. The resonant frequencies are shifced
slightly to higher frequencies but the peak values are essentially unaffected.
When the matched resonant frequency is close to the first natural resonant
frequency of the dipole the two resonant peaks converge into ome, as seen in
Figures 2-109, 2-110, 2-115 and 2-116. The resonant peaks which occur with Type II
matching, however, attenuate with increasing frequency. The attenuation rate
is higher for the dipoles that are matched at electrically shorter lengths.

It is obvious that Types I and IV tend to become transparent to the circuit
at higher frequencies, whereas the remaining types tend to block the antenna
or shunt it out at increasing frequencies. In general, the type of matching

circuit used in any given antenna is unknown.

These figures also indicate that the matched resonance selectivity
curve is generaily of relatively high Q. Figure 2-117 shows an expanded scale
of the resonant peak given in Figure 2-105. The calculated Q of this peak is
61.6. Values of the modified resonance function applied to this curve are
shown with the X's.

2.6 Transmission Characteristics of Antennas Matched

With Single-Stub Transmission Line Elements

Single-stub matching involves locating a point on the transmission
line at a distance Lj from the load impedance where the real part of the
admittance looking toward the load is G°-1/R°, where Ro is the characteristic

e Vi WA =) oy -

impedance of the line. At this point a shorted transmission line stub of
length L2 is connected in parallel to cancel the susceptance in the line.
Beyond this point, then, the impedance looking toward the load is everywhere Ro'
Thus, the load impedance is matched and no incident power is reflected. For
this condition all incident power is absorbed by the load, except for ohmic

losses in the L1 and L2 segments of the transmision line.

The physical arrangement of a single-stub match is illustrated in
Figure 2-118. Let the reflection coefficient of the load impedance by

r=rfi2
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FPigure 2-118 Diagram of Single-stub Match for an Antenna
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as seen at the load. The admittance Ys as seen looking toward the load at
distance L1 from the load is given by [6, page 312]

_ 1- r, |¢_—2£L_L 2T
oo tipmn e
1+ |
- ¢ 1-]r[2-32[r|sin(4-2BLD
°1+|r|2+2|r|cos(¢-ZBL1)
= G+§B.
The admittance looking into a shorted stub of length L2 is

YSC ==j Go cotBLz.
The length L1 of the series section which gives G = Go is

L
1 1 -1
S (¢+n-cos “|r|).
The length L2 of the shorted stub which provides
Yoc = B
is given by
L

2

2 1 -1 vV1-

oot G

The frequency response of an antenna which is stub matched is expected to be

different from that when matched with lumped constants, due to the manner in
which the electrical effects of stub elements change with frequency. Note that
transmission line elements possess the property of providing the same impedance
effects when their lengths are increased by any integral multiple of one-half
wavelength.

In order to study the frequency behavior of stub-tuned antennas,
the impedance matching factor has been calculated for various matched conditions
of electrically short cylindrical dipoles. Similar to the previous analysis
for lumped constant matching, stub matching was examined for conditions of a
thin dipole (h/a-lOS) and fat dipole (h/a=20) at natural resonant lengths of
h/A=.10, .15 and .20. The impedances of the dipoles at these electrical lengths

have been listed in Table 2-5. The electrical length required for the stub

elements to match these impedances are given in Table 2-6.
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Table 2-¢6

Electrical Length of Transmission Line
Stub Elements Required for Matching Cylindrical
Dipole Antennas to 50 ohms

Dipole Length/Radius gipglgok::g:h Ll/x Ly/2
108 h/A = .10 .24476  .0014757
108 .15 .23836  .0044406
108 .20 .21877  .0147498
20 .10 .21928 0077715
20 .15 .18006  .025245
20 .20 .072001 .100827

The resulting curves are presented in Figures 2-119 through 2-131.
Many of these figures illustrate the effect of using transmission line elements
increased by A/2 or A\, As can ba seen, a stub match has a dominating effect on
the antenna impedance over a wide range of frequencies. The design resonance
peak tends to be extremely high Q. For example, the Q of the resonant peak in
Figure 2-121 is 52Lwhich is considerably higher than the Q reported earlier
(61.6) resulting from a lumped constant match of the same antenna. In general,
a stub match produces several random components in the fine~grain structure of
these curves., The interaction of the stub matching circuit continues to create
resonances at higher frequencies. Based on the assumption that specifications
for only the first resonant peak will be known for any given antenna, it will
not be possible to model reliably the structural details as shown.

As a matter of interest, the matched resonance peak of Figure 2-127
is shown on an expanded scale in Figure 2-132. The Q calculated for this peak
is 171.3. Values of the modified resonance function for the Q value are shown
by the X's.
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Figure 2-120 Impedarce Matching Factor of Cylindrical Dipole
(h/a = 10%) Stub -Matched for Resonance at .1 h/A with Stub
Length Increased A/2
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Figure 2-121 Impedance Matching Factor of Cylindrical Dipole
(h/a = 10%) Stub-Matched for Resonance at .15 h/\
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Figure 2-122 Impedance Matching Factor of Cylindrical Dipole
(h/a = 10°%) Stub-Matched for Resonance at .2 h/A
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Figure 2-123 Impedance Matching Factor of Cylindrical Dipole
(h/a = 10%) Stub-Matched for Resonance at .2 h/A with Stub Length

Increased A/2
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! Figure 2-124 Impedance Matching Factor of Cylindrical Dipole
. (h/a = 10%) Stub-Matched for Resonance at .2 h/A with Series
l Length Increased 1)
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(h/a = 10°) Stub-Matched for Resonance at .2 h/A with
Stub and Series Section Increased 1)
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Figure 2-127 Impedance Matching Factor of Cylindrical Dipole
(h/a = 20) Stub-Matched for Resonance at .1 h/A
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Figure 2-128 Impedance Matching Factor of Cylindrical Dipole
(h/a = 20) Stub-Matched for Resonance at .15 h/A
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Figure 2-131 Impedance Matching Factor of Cylindrical Dipole
(h/a = 20) Stub-Matched for Resonance at .2 h/XA with Stub
Length Increased 1A
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The first resonant peak of Figure 2-122 is shown on an expanded
scale in Figure 2-133 illustrating that the matching resonance at .2 h/)A displaces
the natural dipole resonance (at .25 h/A) slightly to the right.

The out-of-band responses of several types of aircraft antennas
have been published [7,8]. Specific antenna structures were analyzed, and
their electrical properties were modeled to permit theoretical calculations
of the antenna response at frequencies outside the design band. The modeling
of each antenna has been very thorough to account for the electrical properties
of the antenna structure and any feed circuitry of the antenna. As shown, the
equivalent circuits contain lumped elements and/or transmission line elements.
These data which in part have been corroborated with measurements, provide
some additional insight into the complicated nature of some real antennas that
will undoubtedly require modeling in IEMCAP. All samples shown were analyzed
as receiving antennas, thus, the resulting overall antenna effectiveness is
represented by effective height, open-circuit voltage at the antenna terminals,

or induced current.

Figure 2-134 illustrates the effective height of a common UHF blade
antenna for aircraft. The design band is 225-400 MHz. The different sections
of the transmission lines and the end capacitances are for tuning purposes.

The antenna is essentially a monopole represented by admittance Ya’ that is
loaded capacitively by a conducting shroud which is dielectrically insulated
from the active element. Unfortunately, the analysis does not extend above
400 MHz. The effective height of an antenna corresponds to the ability to
receive a voltage from an incident field strength and compares to Fz for a

transmitting antenna.

Figure 2-135 shows the open-circuit voltage of a marker beacon
antenna which mounts flush on the underside of an aircraft. The antenna
consists of a cavity shaped like a bowl with a capacitively loaded pickup
inside. As can be seen, the antenna has a distinct resonance at 75 MHz. The
input impedance curve for this antenna (not shown) does not indicate any other

resonances below 250 MHz.
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Figure 2-135 Frequency Response Behavior of a Marker Beacon Antenna




Figure 2-136 shows the open-circuit voltage of an aircraft localizer

antenna which has an operating range of 108-112 MHz. This antenna contains two
tuned loops, a coaxial cable balun, and a 100-ohm resistor with wires wrapped

around the resistor.

Figure 2-137 illustrates the effective height of an HF fixed-wire
antenna on an aircraft. The antenna is driven at the vertical stabilizer.

The curve shows a resonance at 2.5-2.8 MHz, and a second resonance at 8.2 MHz
(=3x2.73). It is presumed that this antenna is tunable at any one frequency,
as shown in Figure 2-137.

Figure 2-138 gives the induced current of a iong duai-wire antenna
trailing behind an aircraft. The antenna operates in the frequency range
17-60 kHz and is tuned by varying the wire lengths. At 17 kHz the wire length
is about 5 miles. The lower, longer wire is grounded to the aircraft and
serves as a counterpoise for the shorter upper wire which is driven against
the aircraft at an "antenna gap." The curves shown in Figure 2-138 are for an
antenna with wire lengths of 1.2 km and 7.2 km. The angle between the wires
in the vertical plane is 6°. The first resonant peak is the natural first
resonance of the long wire. Higher order resonances 18 kHz apart can be
attributed to the combined length of the two wires. The peaks at 55 kHz,

180 kHz, 305 kHz and 430 kHz are due to resonances of the shorter wire.

2.7 Modeling the Impedance Matching Factor of an Antenna

Having a Matching Network

In order to model an antenna having a matching network with
sufficient accuracy to predict its unique characteristics of reflection losses
at out-of-band frequencies, it is necessary to obtain detailed information
concerning the physical and electrical structure of all components of the
antenna. Antenna manufacturers, however, generally provide overall per-
formance data applicable only to the design frequency range. Knowledge of
the design and construction of the matching circuit, the balun, and of the
antenna proper are seldom available. Consequently, it is assumed for the
modeling that the only information available will be the specified frequency

range of operation and an associated directive gain pattern. Where this
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operating range is a resonant peak of a matched antenna, it is not possible to
extrapolate further details of antenna performance without knowledge of the
natural resonances of the antenna proper and of the type of matching circuit.
There generally are too many unknown details to permit modeling the antenna
with the desired degree of accuracy. Thus, it is necessary to look for
characteristics which appear to be common to nearly all of the curves of

impedance matching factor shown for matched antennas.

A noticeable feature seen with these curves is the degree to which
the first resonant peak is isclated from other resonances. It appears that
the specified ope-ating bandwidth of a resonant antenna is generally the first
resonance; that is, a significant resonant peak will rarely occur at a fre-
quency below the specified operating design band of an antenna. Above the
design band centered at fr’ there seldom appears to be another resonant peak
below Zfr. This condition seems o hold true when the matched resonance at fr

is less than .Sfl, where f. is the natural resonant frequency of the antenna

1
proper. When fr:fl there is only one peak. However, for fr in the approximate
range there is only one peak. However, for fr in the approxima-e range .8f1
to .9f1, two resonant peaks appear, with the design resonance having greater

amplitude. It is desirable to model the selectivity on both side of the specified
resonance curve, since use is often made of this selectivity to isolate co-

located systems operating on adjacent channels. It appears admissible to model
the lower side according to the modified universal resonance function down to
the limiting frequency of 1 Hz. For the upper side, it is proposed not to
attempt to model the selectivity skirt of a second resonance. The upper skirt
of the first resonance can be modeled down to some lower limiting level of FZ.
At some frequency, such as 1.8f1, the modeled level could jump to a high
constant level, e.g., 0 dB. The level would remain at this value for all
higher fr~quencies, except for a gradual decay rate to be considered in a

later section.

It may be reasonable to model the upper skirt of the first
resonance as follows. Model according to the modified universal resonance
curve from fl to a frequency f2 at which either of the following occurs first:

a. f2=l.8f1

b. FZ=-20.0 dB.
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This upper skirt would not be modeled if the Q of the operating range given by
43 fu

is less than 3. The model in this case would provide Fz=0 dB for f > fl.

Three conditions of this possible model are illustrated in Figure
2-139, The modified universal resonance function is plotted for several values

of Q in Figure 2-140 to indicate the model shapes for a given Q.

2.8 Impedance matching factor of Slot Antennas

The electromagnetic properties of a slot in an infinite plane
conductor are complementary to those of a thin, flat dipole of exactly the
same dimensions as the slot. [9, page 196] The radiation patterns have
identical shapes except that the electric and magnetic vectors are interchanged.

The input impedance of a slot is related to that of the corresponding dipole as

d
where n = 120m ohms, impedance of free space.
The impedance matching factor of a slot antenna was computed using
the above =xpression and Schelkunoff's impedance equations for a dipole. If
the input impedance of the complementary dipole is

Z, =R, +3jX

d d d
then the input impedance of the slot is
2 R X
z =1 d d
s 4 2.2 2.2}
Rd +Xd R+Xd

The impedance matching factor was determined by using Zs to calculate the
reflection coefficient based on a characteristic impedance of 330 ohms for
the transmission line feeding the slot. [9, page 198]

The resulting curves of FZ' shown in Figures 2-141 and 2-142, are
nearly identical with those for the complementary dipoles (Figures 2-13 and 2-19).
The resonant frequencies occur at the same locations, but the null depths for
the slot are slightly less than those of the dipole. Consequently, Fz of a
slot antenna without feed circuitry may be obtained using the model of a

resonant dipole of equivalent dimensions.
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2.9 Impedance Matching Factor of Folded Dipoles

The impedance matching factor of a basic folded dipole was calcu-
lated at out-of-band frequencies. The dipole was assumed to have equal radii

a for both arms, and an arm separation D to radius ratio of 10 was assumed.

Based on the existence of symmetrical and anti-symmetrical currents

on the dipole arms [11, page 3-13], the input impedance of the folded dipole is

42,2
z; = —as_
Z 27
a s
where ZS = input impedance of standard dipole
Za = input impedance of a shorted transmission line
=3j Zo tan kh,
Z0 = characteristic impedance of balanced transmission line
consisting of dipole arms = 276 log (D/a) ohms
= 276 ohms.
Schelkunoff's equations were used to provide ZS=R+jX. The expression for Zf is
4R(Zo tan kh)2 8(R2+X2)Zo tan kh +4X(Zo tan kh)2
Se = +3

f

4R2+(2x+z0 tan kh)> ar<2+(2x+zo tan kh)>

The input impedance of the folded dipole was then used to calculate the
reflection coefficient based on a characteristic impedance of 300 ohms for

the feed transmission line.

Curves of FZ were obtained for thin and fat cylindrical dipoles.
The results are presented in Figures 2-143 and 2-144. Since these curves indicate
periodic resonances at the same electrical lengths as the corresponding standard
dipoles, the modeling of these curves may be done using the same principles
as used for modeling standard resomant dipoles. It may not be practical to
attempt modeling the deep nulls due to characteristic anti-resonances of
folded dipoles. These nulls appear to be very sharp for calculations based on
a fat cylindrical dipole, as seen in Figure 2-144. This example more closely
resembles actual shapes of folded dipoles than does the extremely thin dipole
case of Figure 2-143. The exact location of these nulls in frequency may be
difficult to determine based on the data specified only for the first resonant
peak. Even if both the first and second resonant peaks were specified, the
null is not located exactly midway. For the exampleshown in Figure 2-144, the
first and second peaks occur at h/)=.23 and .72, respectively, while the null

occurs in h/A=,50.
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Figure 2-144 Impedance Matching Factor of a Folded Dipole with
Fat Elements (h/a = 20) (Based on z, = 300 ohms)
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As a matter of interest, the first resonant peak and null of the
example shown in Figure 2-144 are presented on an expanded scale in Tigure 2-145.
The relatively wide peak of the first resonance is indicative of the broadband
nature of folded dipoles. One example of a resonant peak of a folded dipole
based on measurements, given on page 341 of reference [10], is presented in
Figure 2-146. The shape of this curve does not agree well with the theoretical

shape of Figure 2-145.

Values of FZ determined from input impedance measurements of a
folded dipole constructed by ARC is shown in Figure 2-146. The dipole elements
were made from 300-ohm twin lead taped to a lucite plastic board. A 4:1 trans-
former balun was attached at the feed point to permit the use of a 50-ohm BNC
input connector. As can be seen, the resonances are not very regular, and the
nulls are not well defined. The deepest null is -7.4 dB. The fatness ratio

for each element of this dipole was about h/a = 600. For this antenna, f1=110
MHz.

If it is assumed that folded dipoles as found in practice always
conform to analyses with a fat cylindrical dipole, the curve of Figure 2-144
represents the frequency performance to be modeled. Since it will generally
not be possible to predict the nulls accurately, and since the resonant peaks
are considerably broad, it is recommended that FZ be modeled with a constant
0 dB level at all frequencies above the first resonance. Below resonance, the

modified universal resonance curve can be applied based on a specified Q.

2.10 Impedance Matching Factor of Loop Antennas

Loop antennas comprise a large group of antennas which have unique
characteristics and appear with a wide variety of designs. Loops may be
electrically small or large, tuned or untuned, shielded or unshielded, and have
single or multiple turns of wire. However, let us consider the types of loops

most commonly used in practice.

The loop antenna perhaps finds widest application as a rcceiver of
low frequency signals - that is, LF and VLF. At these frequencies, with
extremely long wavelengths, the loops are electrically small, and are not self-

resonant. A tuning capacitor placed across the terminals of the loop permits
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the loop inductance to be resonated against the capacitor to form a resonant
tank circuit. The voltage across the capacitor is then monitored by a high
impedance input to a receiver. An electrically small loop is generally very
inefficient and is rarely used to transmit low frequency signals. A loop with
an input tuning capacitor will have a distinct first resonance with good
selectivity above and below this point. At sufficiently high frequencies the
loop becomes electrically large where the physical length of the loop conductor
is on the order of one-half wavelength or more. In this mode the loop behaves
quite differently than it does when electrically small, and an endless

sequence of high order resonances can occur as the frequency increases. These
conditione will occur for the loop regardless of the number of turns or if it is
shielded or not. If the loop has only a single turn its length is T x diameter.
If the loop has N turns, its length is N x m x diameter. This is the length
that must be considered in determining its size relative to a wavelength, If
N is unknown, the size of a loop cannot be determined from its diameter alone.
If it is assumed that construction details of a loop are not available, it is

suggested that modeling F, of an electrically small loop be done with the same

Z
model used for a matched dipole.

For the case of an electrically large loop which is designed to
operate at a natural resonance without tuning elements, the FZ may be described
using the model for a resonant dipole without matching. It is expected that
Alford loops, which operate at a circumference of one or two wavelengths

(11, page 6-3], can be placed within this group. Alford loops, however,
contain loading capacitances at the corners of the loop and, therefore, may

not resonate at the higher modes as expected.

2.11 Transmission Loss of Yagi-Uda Beam Antennas

The Yagi-Uda beam antenna is a parasitic endfire array of linear
elements approximately one-half wavelength long. [9, page 231] It consists of

one driven element, which is often a driven element, and a series of directors
which are slightly shorter than the driven element. This kind of antenna is not

frequency independent, for bandwidths of 2 percent (Q®50) are typical. Conse-
quently, the impedance matching factor for this antenna may be modeled as that
of a resonant dipole without matching. It is expected that higher order
resonances will occur at integral multiples of one-half wavelength based on the
behavior of the driven element. If the driven element is a folded dipole, the
absence of data describing the out-of-band performance of a Yagi-Uda array, the
most suitable model for FZ is difficult to determine.
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! 2.12 Impedance matching Factor of Frequency-Independent Antennas

The class of frequency-independent antennas is considered here to
consist of those antennas designed to have an operational frequency range of

3:1 or greater without the need for tuning. Examples of this class are log-

e o — =

periodic and log-spiral antennas. The useful operating range is so broadband
that the concept of Q as applied to the power transmission loss curve is not
. valid. The range must be defined by lower and upper frequencies. The VSWR

is considered to be acceptable over this entire range.

The impedance matching factor measured by ARC for a commercial
log-periodic antenna is shown in Figure 2-148. The operating range of this
antenna is 250~1100 MHz with a maximum VSWR of 2:1. As seen in the figure,
however, the impedance is reasonably good up to at least 4 GHz with the maximum
loss of 5 dB occurring near 1.5 GHz, Below the lower limit F, tends to increase

Z
rapidly.

An example of a logarithmic-spiral antenna is shown in Figure 2-149,

also measured by ARC. The specified operating range of this antenna is 200~
1000 MHz; however, Fz is seen to remain less than 2 dB up to at least 4 GHz.

Below 200 MHz Fz tends to increase rapidly.

Based on these limited amount of data, it is apparent that
frequency-independent antennas may be modeled using the modified universal
resonance function (for some value of Q) to simulate the lower cutoff, and to

hold the loss at 0 dB for all frequencies above the lower frequency, except for

a general decay due to ohmic losss. The selection of Q is somewhat arbitrary

and is not necessarily determined from the operating frequencies of the antenna.

SRR,

The shapes of the curves in Figures 2-148 and 2-149 below the lower frequencies
compared with the family of Q-curves in Figure 2-140 indicate that Q=1 provides
a reasonable fit. The curve for this Q falls to -10 dB at one-half the peak

frequency.

2.13 Impedarice Matching Factor of Helical Antennas

A helical antenna is constructed in the form of a monopole over a

ground plane in which the monopole element is shaped as a helix. [9, page 187]
Thus, it has a single radliating element which is fed at the base against the

ground plane. The electrical properties of the helix are a function of its
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Geometry, i.e.,diameter and turn spacing. At low frequencies where the dimen-
sions are very small compared with the wavelength, the helix behaves as a mono-
pole with a small loop coaxial with the helix, For this mode the maximum
radiation is in a plane perpendicular to the helix axis, and the radiation

is minimum in the direction of the axis. When the diameter and spacing become
appreciable fractions of a wavelength, another radiation mode occurs which
concentrates the radiation in the axial direction. In practically all cases

the helical antenna is designed to operate in this axial mode.

Helical antennas are not frequency-independent but do tend to be
relatively broadband. Commercial models can have bandwidths that are 20% to

50% or more of the center frequency [12].

If the circumference of a helix of N turns is C, then the length L
of the helix conductor is approximately NC. At a low frequency for which
NC®A/4, it is expected that the helix should behave as a monopole and exhibit
resonance. This resonance is relatively broadband due to the diameter of the
helix. There is expected to be selectivity on each side of this "normal" mode
of resonance. When the frequency increases to where Cx.7), the axial mode
occurs, and the antenna becomes very efficient over a broad range of frequencies.
{13, Ch. 7] Thus, if the axial mode begins at a frequency fl, then the normal
mode vesonance should occur at approximately ﬁ{Z.SN. For example, if a 6-turn
helix has a lower frequency limit (axial mode) of 108 MHz, self-resonance is
expected at about 6.4 MHz. Higher order resonances should occur at approxi-
mately 6.4 + n 12.8 MHz, n=1, 2, 3, etc. until the axial mode occurs. Thus,
at frequencies below where the axial mode occurs, the terminal impedance of a
helical antenna is highly sensitive to changes in frequency. In the axial
mode, where 3/4A<C<4/3), the terminal impedance is nearly constant with
frequency. The dimensions of the helix are not critical in the axial mode.
For frequencies above the design axial mode, it appears that the terminal
impedance remains relatively stable, but the radiation pattern deteriorates
from the desired beam shape and becomes multilobes in many directions.
Consequency, in the absence of measurement data for helical antennas over a
wide frequency range, a suggested model for the impedance matching factor is
0 dB level at a)' frequenciecs above the first natural resonance. The fall-off
below this frequency can be modeled with the modified resonance function using

an arbitrary value of Q=1.
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2.14 Impedance Matching Factor of Traveling Wave Antennas

Traveling wave antennas are non-resonant radiating systems that
are normally large and constructed over the long wire antenna and the rhombic.
These antennas can be designed to operate at VHF and UHF. [11, CH. 4] Travel-
ing wave antennas are essentially transmission lines terminated in their
characteristics impedance. Consequently, no energy is reflected and standing
waves are not present on the conductors. It should be noted that one form
of long wire antenna is without termination, where advantage is taken of the
radiation from the resulting standing waves. Modeling the impedance matching
factor for this standing wave t pe of wire antenna could use the model developed ]
for a resonant dipole. However, an additional loss term at the low frequencies ?
due to the height above ground should be added. This loss term is described 1

below.

Traveling wave antennas are normally designed to operate within a

frequency range where their electrical length is from one to ten or twelve r

wavelengths. Consequently, they are relatively broadband. Bandwidth limi- :

i tations may be due more to degradation of the feed (matching and balun) network

i and the terminating resistor than of the radiating elements themselves, If the
termination can be maintained at all frequencies there should be no lower fre-
quency limits while an upper limit should arise eventually where other trans-

mision modes begin to exist on the radiating wires. The terminating resistance

1 for a rhombic must normally be non-inductive and have a resistance on the order

of 700 to 800 ohms. The power to be dissipated in the terminal resistor varies

from about 50 percent of the input power when the sides are of the order of two
wavelengths to 1.5 percent for rhombies five wavelengths or more per side. Feed
circuitry for rhombies is normally designed for a unique value of 600 ohms for

the majority of applications.

Transmissionloss terms arising from deterioration of the feed and

termination elements at higher frequencies are considered in Section 2.0.

At the low frequencies below the design band, the feed circuit may

deteriorate, but this condition is not assumed here. Instead, there appears to

be a height factor which will tend to reduce radiation as the frequency de-

creases toward zero due to the cancelling effect of the ground reflection or

—

image. This loss term is considered in Section 2.16.
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As a result of the many uncertainties associated with this type of

antenna at out-of-band frequencies, it is reasonable to accept a constant value

of F;=0 dB at all frequencies for the model. As already mentioned, low and

high frequency adjustments to account for degradation will be made in later
sections.

4 2-15 Impedance Matching Factor of a Horn Antenna

; Horn antennas generally consist of a rectangular or circular

1 i waveguide section having a flared opening at one end. The other end of the
\ waveguide is either flanged for connection to a waveguide or is shorted to
accommodate a probe for coupling with a coaxial line. It is principally the
interaction between the coupling probe and the EM field inside the waveguide
throat of the latter type of horn that determines the characteristics of

input impedance with frequency.

Horns normally have a design operating range of about one octave.
The upper and lower limits are distinctly determined by the dimensions of the
waveguide. The lower limit is defined as the frequency for which the longer
dimension of a rectangular waveguide is one-half wavelength., This is an
! absolute limit called the cutoff frequency. Theoretically, frequencies below
this value will not be propagated in the guide. Within the design band there
is a well defined mode of propagation of the electric and magnetic fields (TElO).
The next higher order mode can occur when the larger guide dimension equals one

wavelength. It is undesirable to operate a guide at frequencies which permit

higher order modes, since they will not be properly coupled to the load. As
a result, reflections and standing waves may be set up causing losses. Conse-
quently, the design band of a horn ranges from the cutoff frequency to twice

this frequency. [9, page 95]

Figure 2-150 shows the impedance matching factor measured for a
commercial standard horn designed to operate from 1 to 2 GHz. As can be seen,

the factor does not fall abruptly at 1 GHz, although, theoretically, propagation
in the guide can't exist below 1 GHz. However, it is presumed the user will
supply the frequency range below cutoff. Based on the curve shown, the

simplest model is a straight line from (f/fc, TLOSS)=(.8,0.0) to (.6,-20.)

which is indicated by a dashed line. Theoretically, however, the attenuation
in a waveguide operating below cutoff is not infinite. The loss (dB) per guide
2-125
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length d is given by [l4, page 23-6]
T
L =s4.4 & 128
Ac X
where Xc is the wavelength at cutoff. Note that at very low frequencies where

A>>AC, limiting loss is independent of frequency and is

d
= 54.4 - 4B.
L 5 e dB

If we consider. that the length of waveguide inside the horn is approximately
d/Xc=.5, then the limiting loss is L=27.2 dB. Consequently, a limit of -20.0

is a reasonably safe level for modeling FZ from £f=0 to f=.6fc, as shown in
Figure 2-150,

Above the design band there are too many uncertainties to allow

prediction of the terminal impedance. It is expected that Fz will vary con-

siderably but may return to 0 dB over limited ranges of frequencies. There-
fore, the model should provide a constant level at O dB for all frequencies

above cutoff.

The input impedance characteristics of a horn antenna also apply

to antennas which use the horn as a primary feed, such as radar antennas.

The terminal characteristics are determined primarily by the nature of the

feed point. However, radar antenna systems usually use wavegu'de to transfer

power between the transmitter/receiver and the antemna. A large problem seen

‘ with out-of-band performance o: a rotatable radar antenna is the existence

of higher order modes in the guide. These modes are not generally predictable

since they depend on dimensions of the waveguide sections, locations of dis-

J
continuities and fittings in the line (e.g., elbows, tees, reducers), and the ]
angular position of the rotary joint.
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2.16 Modeling Directive tGain batterns of Antennas

Directive gain is the second term of the overall gain expression of
an antenna. It accounts for the variations of radiation levels at different
directions from the antenna and is given relative to the level that would be
received if the antenna were an isotropic radiator. Internal power losses of the
antenna 2renot considered in the directive gain term. Thus, the modeling of

directive gains is based on lossless antennas.

As is currently done in IEMCAP, the models for low-gain antennas,
such as dipoles, monopoles, loops, etc., are derived from theoretical expressions;
whereas, for high-gain antennas the models are based on user input data such as
mainbeam gain, sidelobe gain, and beamwidths which define the size and shape of
the radiation pattern. In order to extend these models to out-of-band fre-
quencies it will be necessary to rely heavily on available measured data and
applicable theoretical analyses. Unfortunately, the field of antennas is lacking

in both of these types of data at out-of-band frequencies.

2.16.1 Modeling the Directive Gain of vipole Antennas

The expression for the magnitude of the electric field of a
symmetrical center-fed, thin linear antenna of length L=2h is [13, page 1411.

60 Io cos(E% cosd) - cos(E%)

[l -

r sin @
where I0 = peak value of sinusoidal current distribution on antenna
= distance from antenna (assumed to be far field)
k = 2m /A
C] = elevation angle in spherical coordinates, where

antenna axis is aligned with Z-axis,

The expression in the absolute magnitude brackets describes the
shape of the radiation pattern. Theoretically, this expression is valid over
all frequencies - that 1is, for 0<L/A<w- and provides a basis for modeling.
This pattern function should not be used directly for the model for several
reasons. The theoretical pattern for a dipole longer than one wavelength
consists of multiple lobes with deep, sharp nulls between lobes. The angular

positions of the nulls are highly sensitive to frequency and, in practice,
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are easily affected by the local environment. Further, the "fatness" or
diameter of real antennas tends to eliminate the nulls, Consequently, the
null and lobing details defined by the pattern function are generally not
reliable and should be eliminated from the model. A practical approach is to
model the envelope of the pattern in a manner which preserves the most signifi-
cant features. First, the nulls in the direction of the antenna axis should be
included in the model. Second, the relatively high gain lobes near the

antenna axis that occur at higher frequencies should also be included in the
model.

A study of the shapes of the patterns over a wide range of fre-
quencies suggests that they be enveloped with a circular arc tangent to the
antenna axis plus a straight line parallel to the antenna axis. Two examples

of this modeling are illustrated in Figure 2-151.

The first step is to dete:raine the radius ot the envelope circle,

Let the antenna length be expressed as n half-wavelengths, where

Then, the angle of maximum radiation, that is, the angle that the strongest lobe
makes with the antenna axis, is given approximately by [9, page 180]

n-1
COSO = —.
n -

Figure 2-152 illustrates the geometry of a circle with center C on the Y-axis and
tangent to the X-axis. The circle passes through point A where angle AOD=0.

Let B bisect OA=S. By similar triangles angle OCB =0. 1If it is assumed that
AD=1, then from right triangle ODA

1
sin0® S

and from right triangle OBC, where OC=R,

S
sin® TR

Combining these, we have
1

2 sinZO
1

2(1—c0929)

R =
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Figure 2-151 Examples of Model Envelope Around Dipole
Radiation Patterns
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Substituting cos0 from above into this expression and simplifying, we have

R= 0
2(2n-1)"

This

expression gives the approximate radius of a circle tangent to the antenna
axis

at the center of the antenna and passing through the peak of the max imum
gain or outer lobes for an antenna of n half

-wavelengths long. It is realized
that

this expression gives a slightly smaller radius than required since we

want the circle' to enclose the outer lobes, not pass through the center of them,

The equation of the tangent circle is in Polar form with the origin
at 0 ig

GO(G) = 2R s8in®

n2
=m sinQ .
Next, it is necessary to fit this function to the theoretical pattern shapes

for various values of n in order to determine an appropriate adjustment of n
for the model.

Not only are we interested in the shape of the radiation pattern,
we are also interested in the relative magnitude of it over all frequencies.
The radiation pattern, given earlier, by

cos(E% cos@)-cos(ggﬁ
Fo) =

sin@
does not, by itself, define the relative magnitudes of the patterns for a given
antenna of length L radiating W watts of power at various frequencies. For
example, the magnitude of the pattern envelope broadside to the antenna (O=90°)
varies periodically from 1.0 (for odd n) to 2.0 (for even n). The varjiation of
peak current Io with frequency (or electrical length) for a comstant level of
radiated power W must also be congidered since it affects pattern scaling.

If we square the field strength expression, we have

2
1817 = () 12 pre)?
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Figure2-152 Geometry for Determining Radius of Envelope Circle
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R
Multiply by Eg =1 where Ro = radiation resistance of antenna referenced to

a current maximum (at Io).

e o e ey mm =t e

2
2 IR
2 g% = (B2Y 22 (ro))?
60N W 2
- - (%%) R o)
o 1g] = % ey
f r/ﬁg

The total power radiated from the antenna may be expressed as [13, page 147;
15, page 41}

W= 12R .
oo

That is, if the antenna were fed at a current peak with input current IO, the
input power would be given by the above expression. This is the same total
power that would be radiated when the antenna is center-fed with an input

: current that results in a peak current of Io. Consequently, the above field

strength expression provides the absolute power density level in the direction

O at a distance r for a total radiated power of W watts. For pattern modeling,
variables W and r are assumed to be constant. The desired scaling factor is
1/J§; which varies with the electrical length of the antenna. This radiation
resistance Ro is given by [15, page 40]

1
2

R (kL) = y+ ln(kL)-Ci(kL) + sin(kL) [S1(2kL)-281i(kL)]
1 KL
+ 5 cos(kL) [y+1n(=3) + C1(2kL) - 2Ci(kL) }

(Note: A constant factor of 60 for this entire expression is omitted since it

does not affect relative scaling with frequency.)

where ~ = Euler's constant = 0.5772...

Si = gine integral

Ci = cosine integral

) 2-133
]
'




The gain pattern of the half-wave dipole is chosen for an absolute
reference for all the patterns. Consequently, an absolute scaling factor K must

be defined such that the peak value of the pattern of =90 for a half-wave

dipole (kL=m) 1is unity

lE| = X D

VRJ“)

For this case, F(%) = 1.0 and /i; = 1.10. Consequently, K = 1.10, and the

scaled pattern function is

cos(EécosO)-cos(k%)l

2
F"(8) = ~1.10 sind l

VRoikLS

Sin.e multiple lobing does not occur for antenna lengths shorter
than one wavelength (kL<2m),, this region of modeling is treated separately.
The model for all antenna lengths less than one wavelength is a unity circle,
i.e., G(0) = sin0, This is the theoretical pattern of a very short dipole
(kL<< 27T) The peak value of the scaled pattern for a one-wavelength dipole is
1.21 which is less than 1.7 dB above that of a half-wave dipole. Thus, a unity
circle model is also applied to a full-wavelength antenna.

For antenna lengths greater than one wavelength multiple lobing
occurs which tends to broaden the pattern along the antenna axis. A study of
pattern behavior with increasing frequency (or kL) reveals a periodic broaden-
ing with each wavelength. The pattern is broadest at odd multiples of one-half
wavelength (n odd). Although the pattern generally becomes broader with
increasing wavelengths, there is a relatively less broadening of the pattern
between the odd multiples where even multiples or an integral number of wave-
lengths occur. In order to envelope the maximum excursions, the model para-
meters were developed from a detailed study of the scaled pattern at odd
multiple half-wavelengths only (n odd).

The scaled pattern was calculated from 9=2° to the first peak for
several odd values of n ranging from 3 to 61 and plotted on rectangular
coordinates shown in Figure 2-153. This plot provides the shapes of the pattern
boundaries which are to be modeled with a circular fit. These curves are

similar to those shown in Figure 4-3 of Jasik [ll, page 4-5].
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Figure 2-153 Radiation Pattern Function of Center-fed Dipole
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The model function, given earlier,
2

0, sin€

2n -1
o

was plotted similarly for the values of n =n (results not presented here). A

G(6) =

comparison between the two families of curves indicates good agreement if
n,=n + .5

Using this definition for n,, a new family of model curves was calculated‘and

plotted as shown in Figure 2-154. The slopes of the model curves show excellent

agreement with the slopes of the theoretical patterns in Figure 2-153.

Consequently, a new family of curves for these model values was calculated and

plotted, as shown in Figure 2-154. The slopes of the model curves show excellent

agreement with the slopes of the theoretical patterns in Figure 2-153

The relationship between n and no is presented in Figure 2-155. The
solid line represents n,=mn, and the dashed line indicates the model relation-
ship. As stated above, the value of n exceeds n by .5 for all n>3 (kL >3K).
Since the amplitude of the model function becomes 1 for n, = 1, the value of a
is shown at a constant level of 1 for all n below 2. This corresponds to a
unity circle for all model patterns in this region. Between n =2 and n = 3
a straight line is drawn for the model function in order to provide model

continuity. The equation of this line is
n_ = 2.5n-4,
o

Further examination of the scaled patterns over a wide range of
frequencies indicates that a straight-line envelope across the peaks of the
lobes provides a reasonable containment of the pattern if located at a distance
of 1 from the antenna axis. The unity circle is, therefore, tangent to the

envelope line, and all larger radius circles are truncated at this line.

This essentially completes the definition of the proposed directive
gain model for linear, center-fed antennas. There are three distinct regions
of antenna electrical length for which the model is defined differently. These
models are summarized below. The dipole length is expressed in terms of h-iL.
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Figure 2-154 Circular Envelope Curves of Pattern Model
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Region I: o< % < W5

= sin®
If 6 <.1, then G = .1

Region II: S <T <75
. 2 A
_ g
G 7a -1 sin®
where n, = 2.5n-4
=10chy_
—IO(A) 4

1
f > = e
If G sinO >1, then G sing 040

If G <.1, then G = .1

: h
Region III: .15 §_i
n2
Gﬂ = sin®
- 2n -1
o
wheren =n + .5
o
=10(’)\l) + .5
If G sin®@ >1, then G = 1 -3 O$0
sin®

If G <.1, then G = .1

For all three models a lower limit on the gain is placed arbitrarily
at .1 or -20 dB. This is a practical limit for radiation in the axial directionm,

since real antennas with finite thickness seldom exhibit nulls deeper than -20 dB.




-

1
t

The above directivity gain model has been programmed on a minicomputer
to be drawn superimposed on the theoretical scaled pattern function. A series
of plots illustrating the features of the model for antenna lengths ranging
from L/A=.25 to L/X=10.1 1is presented in Figures 2-156 and 2-157. The patterns
shown in Figure 2-156 are drawn on a linear polar scale, and those shown in rigure
2-157 are drawn on a logarithmic polar scale. The straight line seen at the
bottom of each pattern represents the antenna wire. One half of the length of
this line represents a scale of unity gain for the linear plots, and a scale of

20 dB for the logarithmic plots.

As expected, the model shows excellent enveloping of the outer lobes
for odd half-wavelengths (1.5, 2.5, 3.5,...) but tends to appear excessively
large for the integral wavelength cases (2.0, 3.0,...). It is possible to model
these periodic variations; however, several factors should be considered. It is
questionable whether the model should become sufficiently complicated to account
for these second-order variations. The errors shown in the figures may appear
excessive, however, there is evidence indicating that the radiation patterns

of real dipoles having finite thickness exhibit a general lack of deep nulls
and have a finite amount of radiation along the dipole axis. Figure 2-158

[11, page 3-8] illustrates pattern degradation as the dipole becomes fatter

for various electrical lengths. The top row, for an infinitely thin dipole,
shows the theoretical patterns. The remaining rows illustrate measured
patterns for dipoles having the indicated length/diameter ratios.* There is

a striking degree of pattern degradation for the L = .625\ and L = 1.125)
cases., It is interesting to note that in some cases lobes disappear and in
other cases new lobes are formed. Since these kinds of details are extremely
difficult to predict with theory, the most practical solution .ay be to provide
an envelope which will contain the majority of patterns for any given "fatness"
ratio. It is felt that the proposed model provides a satisfactory compromise
between minimal error and simplicity in view of the wide range of complex

variations that can occur with actual patterns.

* Note that L in Figure 2-158 is one-half the dipole length.
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! 2.16.2 General Pattern Model for Medium-Gain
' and High Gain Antennas

The directive-gain patterns currently used in IEMCAP for medium-

gain and high-gain antennas are defined by the following user-supplied sub-

parameters entered on the ANT input card:

i GmB = maximum gain
g = 3 dB vertical half-beamwidth
]
: ¢B = 3 dB azimuthal half-beamwidth
GmsL = major side-lobe gain
¢Bl _ side-lobe ongle
GBl = back~lobe gain
These quantities define a three-level model with levels GmB’
GmsL and GBl' The user may specify a two-level model with levels GmB and

GBl by setting GmSL = 0 and ¢sl = 0.

Figure 2-159 illustrates the existing three-level model in IEMCAP
; for a typical antenna pattern., A similar model defines the pattern in the
‘ orthogonal plane. The two orthogonal patterns generally differ only by the
. mainbeam half-beamwidths OB and ¢B.

The simplicity of the existing pattern model is desirable with re-
gard to ease of coding (in subroutine GAIN), but the model provides several
undesirable features. As can be seen in Figure 2-159, the model predicts gain
values which may be considerably less than the actual values. Further, the
gain is discontinuous at the angles i'63, t¢B and i'<tasl because of
rectangular profiles. Finally, while the user can specify separate orthogonal
beamwidths for the main beam, only one side~lobe angle may be specified which
defines a square contour of constant gain for the major side-lobes. That is,
the model assumes that the side-lobe gains in both the horizontal and vertical

planes are equal.

The proposed model for the in-band directive gain pattern is il-
lustrated in Figure 2-160. This model {s defined using the same antenna input
parameters but improves upon the existing model by providing the following

features. The transitions between constant-gain levels are defined by
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Figure 2-159

Existing IEMCAP model for antenna pattern.

Figure 2-158 Proposed in-band model for pattern
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finite, linear slopes (dB gain vs angle). The slopes are a function of the
beanwidth and tend to enclose the actual pattern. It can be seen that the

proposed model provides a continuous gain function at all angles.

In addition, the proposed model provides circular or elliptical
contours of constant gain in order to more accurately represent the actual

gain in directions off the principal planes.

As indicated in Figure 2-160, all sloping line segments converge to
a common intercept point G, on the gain axis. The value of G, is relative to
the mainbeam gain for a given frequency. For example, in ‘the design band the

mainbeam gain is Ggpg and
Go = Gpg + &
Values of A for medium-gain antennas and for high-gain antennas have been de-

termined empirically, as described in the respective sections for these

antennas.

An isometric representation of the proposed pattern model in
rectangular coordinates is illustrated in Figure 2-161. The horizontal axes
are the azimuth and elevation angles. The vertical axis, which represents
the antenna mainbeam axis, is the pattern directive gain. The profiles of
directive gain for the two principle planes are indicated. This model ef-
fectively consists of a truncated cone or frustum to model the mainbeam, and
a second frustum to model the major side-lobes. The base plane represents

the back-lobe gain. Note that both cone models have a common vertex at G,.

The three-dimensional gain model is fully defined by the azimuth
and elevation gain profiles which are derived from user-input antenna para-
meters. The linear equations for the two sloping lines and the coordinates
of the breakpoints at the lower ends of the sloping line segments are presented

below.

It should be remarked here that 85, = ¢sl in the existing IEMCAP
modei. ror the proposed model, a special case is permitted where 85; # ¢,
which 1is described later.
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Figure 2-161 Three-dimensional illustration of
conic gain model of antenna pattern
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Figure 2-162 illustrates a general three-level gain profile with all

breakpoints identified by the following variables:

G_ = peak mainbeam gain

Gg = major side-lobe gain

Gp = back-lobe gain .
By = 3 dB half-beamwidth of mainbeam

B, = angle at which gain = Gg

Bs = side-lobe angle

back~lobe angle

i

These variables are general and may assume values which are a function of
fre. 2ncy for a given antenna. Further, the general gain profile applies to
either the azimuth or the elevation profile. For example, in the design
band, Gp = Ggg, Gg = GmsL, Bm = ¢g or Bp, Bg = ¢g1, etc. Figure 2-162 also
illustrates the relationship

G, = Gg + A

Because of symmetry, only the positive half-plane is analyzed.

In general, the gain levels Gps Gs, G, and angles fps Bg are
specified for a given antenna. At out-of-band frequencies these quantities
can be easily derived from expressions specified for a given type of antenna.
However, angles B,, B;, and the equations of the two sloping segments which

are not directly specified, must be derived using the specified quantities.

The following quantities are easily derived from similar triangles
in Figure 2-162.

Gp - Gg + B
Ba=Bm —_—A_A_-_
Gm - Gy + A
By = By —————
Gy - Gg + A

The equation of the mainbeam slope line is:

A
G(B) =G+ 4 - s@; (B < 18] < 8,),
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Figure 2-162 General three-level directive gain profile
of proposed model
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and the equation for the side-lobe slope is:

G -G_+ A

G(B) = Gy + A - B2 (8s < 18] < By).

It has been assumed in the models described up to this point that
the major side-lobe gain is greater than the back-lobe gain; that.is,

CmsL > Cp1
In order to improve generality, the proposed model also permits the back-lobe
gain level to exceed the side-lobe level, as illustrated in Figure 2-163

this case, the side-lobe slope line extends to point G§ such that the slope
is the negative of that shown in Figure 2-162. Thus,

Gy = Gg - (Go - Gg)
= 2Gg - Gy
=2Gg - Gp - A

That is, Gg 1s midway between Gj and (E3 Then, for this case the back-lobe

angle is given by

8y = B
Gy - Gg + A

and the equation of the side-lobe slope line is
G -Gg +4
G(B) = 2Gg - G, + A+ B
Bs

The complete directive gain model is described in spherical
coordinates., Figure 2-164 illustrates a sphere with center 0 and noints A. B.
C on the surface. The beam axis of the antenna lies along radius vector OA,
thus point A represents the origin of the antenna beam angles ¢, 8, where
¢ 1s a horizontal azimuth angle and @ is a vertical elevation angle. Points
A and B lie on a great circle in a horizontal plane, passing through O, and
points B and C lie on a great circle in a vertical plane passing through the
poles P, P°. While point A corresponds to the antenna "look” angle, point
C (¢,0) corresponds to the direction of a coupling path for which the antenna
gain 18 to be determined.
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The antenna gain pattern, which is specified by the azimuth and
elevation profiles, as 1llustrated in Figure 2-160, is thus defined in the
azimuth plane OAB and the elevation plane OPAP” of Figure 2-164. It is assumed
that constant-gain contours in the model have a general elliptical shape in
terms of ¢ and 8. Thus, for directions off the principal planes, the model
gain is determined by calculating the elliptical gain contour passing through
the given point. The ellipse contours are defined by polar coordinates (p, ¥)
as shown in Figure 2-164. With the application of spherical trigonometry to
right spherical triangle ABC, coordinates p, Y relate to ¢, § by the following:

cosp = cos ¢ cos O

tan ¥ = tan §
sin ¢

The polar equation of an ellipse is usually expressed as a function of (r,0)

2 azb2
r -

a2 sin20 + b2 cosze
where a and b are the semi-axes. Substitutuion of the identities
sin26 = —1-— cos2 = —r

1 ’

1+
tanze

1 + tan20

gives the alternate expression

9 -1+ tanze
r = 7
1 4 _1 tan'9@
a2 b2
In terms of the spherical quantities (p, ¥), this expression becomes
2 1+ tanzw
p I em————
l—+-i— tanzw
¢2 82
o 0

where ¢n and Oo are the semi-axes of the (spherical) ellipse.
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It is desired to determine the gain profile in the plane OAC which
is rotated by Y from the principal azimuth plane OAB. The above expression
can be used to calculate the beam angles Bm, Ba, Bs’ and Bb for the profile
by substituting the corresponding values for ¢o and Go. For example, by
setting ¢° = GB and 80 = GB, then Bm = ?(w). Also, with ¢o = ¢s1
esl’ then BS = p(y). Values of Ba and Bb are given similarly by p(Y)

and 6 =
o

using values of ¢0 and Oo set equal to the respective azimuth and elevation
beam angles Ba, Bb calculated in the principle planes.

The value of gain at (p,¥) is then given directly by the profile
with B=p.

The directive-gain model is also applied to the out-~of-band
patterns of antennas. Since the model is fully defined by gain profile
functions in the two principal planes, the out-of-band model is based on the

profiles adjusted for out-of-band performance.

In general, the design band model will tend to deteriorate with
out-of-band frequency. The mainbeam and side-lobe gains generally drop and
the beamwidths increase until eventually the pattern legenerates into an iso-
tropic pattern. All out-of-band effects are defined by frequency-dependent
adjustments of the specified in-band parameters of gains and beam angles.

The frequency functions are relative to fL and fU which define the lower

and upper limits of the design band.

2.16.3 Directive Gain Models of Medium-Gain Antennas ]

The directive gain of medium-gain antennas is considered to lie
in the range from 10 dB to 20 dB or 25 dB. Examples of medium-gain antennas
are the Yagi-Uda beam array, long~periodic, log-spiral, helical, corner re- }

flector, and sectoral horn,

In order to apply the directive-gain pattern model to this class
of antennas, the determination of the slope intercept point G0 was made as
described below.

A series of directive-gain patterns for various beamwidths were
calculated and plotted on rectangular coordinates of Gain (dB) vs angle with

the mainbeam axis at 0°. These patterns represented those of a linear array

of dipoles, such as a Yagi-Uda beam or a log-periodic antenna.
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The general expression for the pattern of an array of identical

elements 1is [9, page 21§] .
EA @) = k.- Eg ¢) . E )
where
EA (¢) = antenna pattern factor
Ee (¢) = element factor
Ea(¢) = array factor

kn = normalizing constant

That is, the pattern of the array is obtained by multiplying the pattern of
single element by the pattern af the array as calculated for isotropic

point-source elements. The array factor is given by

sin [a(2028 9y ]
:]

n sin[“d iin _

E @) =

where the array consists of n elements with equal spacing d and phase

difference a between adjacent elements.

For this study, two different element patterns were used. In
the plane perpendicular to the elements (H-plane), the pattern of each
element is isotropic -- that {is,

E,, () =1
In the plane containing the elements (E-plane) the element pattern is a
figure 8 given by

E., (¢) = |cos ¢
The resulting array patterns are presented in Figure 2-165 for the isotropic
elements and Figure 2-166 for the cos¢ elements. All curves are normalized

to O dB peak by setting kn = 1. The gain value shown was calculated by

G + 20 log E, (4).




|

The widest pattern in each figure is that of a cardioid (n=2, d=A/4, a=90°).
For the remaining patterns d=.3\ and 0=108°, In each figure the 3 dB beam-
width was determined and indicated on the ¢-axis. Straight lines were drawn
through these points tangent to the corresponding pattern curve. It is
apparent that the (negative) slopes of these lines tend to decrease
proportionally with the 3 dB beamwidth, that is, they tend to converge to

a point Go on the G axis. The convergence point for the isotropic‘elements

is approximately G _+30 dB while that for the cos$ elements is about

mB
GmB+20 dB. Consequently, a practical compromise of Go = GmB+25 dB or

A =25, was selected for both pattern families, as indicated by the dashed
lines in both figures. This value of A is applied to the modeling of all

medium-gain antennas.

A feature which is common among medium-gain antennas which
consist of linear, dipole elements lying in one plane, such as the Yagi-Uda
beam or log-periodic antennas, is that there is relatively little radiation
off the ends of the elements. Consequently, the major side-lobe gain of
the E-plane patterns for these antennas tends to be - »latively weak and is
usually exceeded by the back-lobe gain. The major side-lobes for linear
antenna arrays have peaks lying in the orthogonal plane (H-plane) where the

individual elements radiate omnidirectionally.

Although the side~lobe cone segment of the proposed model is

defined in terms of GmsL’ ¢sl’ and esl, only GmsL

The existing antenna model in IEMCAP assumes 631 = ¢

and ¢sl are user input.
s1°® For the proposed
model the value of 681 will depend on the specified polarization. For
circular polarization 951 = ¢sl’ corresponding to circular contours of
constant side-lobe gain. For horizontal or vertical polarization, the
specified side-lobe angle ¢sl is applied only to the H-plane pattern. For
these cases it is assumed that no major side-lobes exist in the E-plane

pattern which is, therefore, only a two-level profile.

An isometric view illustrating this special model is shown in
Figure 2-167. As shown, the base of the mainbeam cone is tangent to the
ellipse on the truncation plane of the gidr-lobe cone. For the E-plane

profile the mainbeam slope extends from GmB down to GBl with a constant slope.
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Figure 2-167 Three-dimensional illustration of directive
gain model for a linear beam antenna
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This slope line passes through the tangent point where the gain equals GmsL'
The tangent point always lies in the E-~plane profile which is the ¢-plane
profile for a horizontally polarized antenna or the O-plane profile for a

vertically polarized antenna.

The tangent point of this special model lies at the extremity
of the semi-minor axis of the ellipse defining the side-lobe cone segment.

The beam angle to this point is Ba= Bs as indicated in Figure 2-162 and given
in section 2-16.2.

The out-of-band characteristics of typical medium-gain resonant
antennas have been reported [}6, page 5-24:} the mainbeam gain decreases
6 dB, the 3 dB-beamwidth doubles, and the major side-lobes vanish. These

characteristics have been applied to the proposed antenna model.

The specific directive gain models which are proposed for
various types of medium-gain antennas are described in the following
sections. The first model described is for a Yagi-Uda beam array. This
model is presented in detail and serves as an example for the remaining
models which are defined in brief.

2.16.3.1 Directive Gain Model for Yagi-Uda Beam Antenna

The Yagi-Uda beam antenna is considered to be an array of linear
dipole elements in which only one is active. The remaining elements (reflector
and directors) are parasitic of slightly different lengths than the active
element. This tapering of element lengths along the beam array tends to
increase the overall usable bandwidth of the antenna relative to the beam-
width of the active element alone. In many cases the active element is a
folded dipole.

The directive gain model assumes two major effects at out-of-band
frequencies. First, at frequencies % fL and 3fU outside the design band, the
gain and beamwidths degenerate into an isotropic pattern. Second, at
frequencies above 3f” the dipole pattern of the active element dominates and

is superimposed on the isotropic pattern.

The proposed directive gain model is defined in Table 2-7. Each

column defines the relative values of the parameters occurrine at the
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Table 2-7 Breakpoint Parameter Table for

Yagi Uda Antenna Model

Para-
meters

Breakpoint Frequencies

CnsL - - Cpy Bost Ggy - -

¢)sl - - ¢sl ¢sl ¢sl - -

G 0 dB 0 dB G G G 0 4B 0 dB

Bl Bl Bl Bl + Dipole
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designate breakpoint {requency. The center column, which represents the
design band fL to f”, lists the user input parameters for the antenna. All

transitions of gain (in dB) and angles between breakpoints are linear with
frequency.

The transition from fU to 2f”, which is the same as that shown for
fL to % fL, is illustrated in Figure 2-168a. The mainbeam gain drops 6 dB and
the beamwidth doubles within the transition. Also, the major side-lobe gain
(if any) decreases to the back-~lobe gain level during the transition. The
corner point (GmsL’ ¢Sl) of the pattern drops linearly with frequency to
(GBl’ ¢Sl). At the end of the first transition the major side-lobe has
vanished. Further increase in the out-of-band frequency results in the
pattern to transition linearly to the second breakpoint at 3fU (or %-fL).

This second transition is illustrated in Figure 2-168b in which both the main-
beam gain and the back-lobe gain transition linearly with frequency to the
0 dB level. At the second out-of-band breakpoint the model patterns are

defined by a constant 0 dB level which represents an isotropic radiator.

For frequencies above 3f“ the model pattern is the superposition
of a dipole pattern presented in Section 2.16.1 and a 0 dB isotropic radiator.
This model is defined as the dipole model in which a gain value of less than

0 dB is set equal to O dB. The resonant frequency of the dipole may be
defined as

f =//foU
o

Expressions for the various out-of-band transitions of the break-
point parameters defined in Table ?-7 may be derived from one general expression

A linear transition of (f, a) from (£, al) to(fz, az) is described by

f - fl
— (a, ~ a,) + a
£, 6 274 1

a (f) =

The values of constants fl’ f2, al, and az for each transition defined in
Table 2-7 are enumerated in Table 2-8.

Since the Yagi-Uda antemna is an array of linear dipoles, the

specified side-lobe angle ¢31 is applied only to the H-plane pattern, as
discussed in Section 2.16.3.
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Pattern at fy(or EL)

L
— —_ Pattern at 2fu(or sz)

Figure 2-168a Transition with frequency of pattern model
from design band to first breakpoint.

‘G(dB)

1

. Figure 2-168b Transition with frequency of pattern model
' from first to second breakpoints
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Table 2-8 Frequency Transition Table for Yagi-Uda Antenna Model

; Transition f1 f2 Parameter a, a,
i 1 1 1 1 Mainbeam Gain 0 G -6
L 3fLfof 3] 2L L1
! Backlobe Gain 0 G—Bl-
Mainbeam Gain GmB-6 GBl
1 1
SEE<E 5, £ 3 dB Beamwidths Pé.,20,| 5,6,
Sidelobe Gain GBl nsL
i G _. .
. fufﬁngu fu 2fu Mainbeam Gain nB GmB 6
l 3 dB Beamwidths [ ¢;,6, | 20,26
F ! Sidelobe Gain GmsL Gsl
i 2f <f<3f 2f 3f Mainbeam Gain G -6 0
u—-=""u u u mB
Backlobe Gain GBl 0
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2.16.3.2 Directive Gain Model for Log-Periodic Antenna

1 The log-periodic antenna may be considered as an array of linear
elements in which the phase center generally shifts position with frequency.
Since the behavior of the log-~periodic antenna is similar to that of a Yaga-Uda

beam antenna, the proposed model for the log-periodic is the same as that given
in Table 2-7, with the exception that the superposition of a dipole pattern above
3fu is omitted. It is felt that the alternating polarity of successive dipoles

may tend to cancel signals received on several elements simultaneously at fre-

quencies above the design band.

: Although the design band may be relatively wide ~ e.g., fu/fL=10 -
! the design gain and beamwidth of a log-periodic antenna are assumed to remain

constant over the design band.

Since the log-periodic antenna is an array of linear dipoles, the
{ specified sidelobe angle ¢s1 is applied only to the H-plane pattern, as de-
scribed in Section 2.16.13.

2,16.3.3 Directive Gain Model for a Helical Antenna

Helical antennas generally exhibit two modes of operation: a low-
frequency mode, where it behaves like a monopole, and a high-frequency mode,

which is end-fire of mndium gain. This latter mode is the normal mode of

operation and is assumed to be the mode for which the user specifies the input
parameters. Thus, within the design band from fL to fu the radiation pattern
is modeled as a medium-gain antenna. Major sidelobes may or may not be
specified. Since the helix is symmetrical the field is circularly polarized
and ¢B=GB, ¢sl=651. The proposed model provides a transition of this pattern
into an isotropic pattern outside the design band. At frequencies below the

design band the isotropic pattern transitions into a figure-8 pattern of a

dipole with the axis aligned with the helix axis. The proposed model is
defined in the following table.




o Breakpoint Frequencies
E Para-
meters 1 1
<t ffL £, to fu 2fu 3fu >3fu
-6
o GinB 0 dB GmB GmB 0 dB -
i i
| 3 ¢B,OB Isotiopic 2¢B,ZOB ¢B,BB 2¢B,62 Bﬂ 2¢B,2GB
P Dipole
é nsL 0 dB GmSL 0 dB - -
{
‘ ®1 01 b1 . %1 - - ;
GBl 0 dB GB1 0 dB 0 dB 0 dB ;

For frequencies less than %fL’ the model consists of the super- .

position of an isotropic pattern and a figure-8 pattern. The maximum gain of !

the figure-8 pattern remains fixed at 1.0=0 dB, while the isotropic pattern i

decreases linearly with frequency to -20 dB at %gfL. The equation for the |

isotropic transition 1s given by
f f

8 2f L L
Giso(f) -20 x 7(1-?;) dB(E _<_f_<__ )

2

——_——A g < fremw o
.

The gain is the larger of the two patterns determined at any ¢,6.
2.16.3.4 Directive Gain Model for a Corner Reflector

The mainbeam of a corner reflector antenna operating within the
design band is of medium gain with little or no backlobe and sidelobes. This ‘
region is modeled by the user-defined conical model. Above the design band . 3
the beam tends to deteriorate as radiation begins to leak through the reflector,

which is usually an open mesh. Since the feed element is usally some type of

dipole, there will tend to be nulls along the dipole axis. Thus, the pattern

does not transition into an isotropic pattern. Instead, the pattern above the ;

design band is the superposition of the concial beam and that of a dipole,
whichever provides the larger gain for a given ¢,6. At fu when the mainbeam

begins to deteriorate, the f’gure-8 dipo : pattern develops in magnitude from
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-20 dB to 0 dB at 2fu. From qu to 4fu the mainbeam vanishes and the maximum
gain of the figure-8 pattern increases to 3 dB, which remains for all higher

frequencies. The standard dipole pattern model is not applied here since the
feed element often is a discone which is preseumed not to experience increased

gain with higher order resonances.

Below the design band the model transitions into an isotropic
pattern. It is felt that at frequencies well below the design band the entire
antenna assembly would tend to appear as a fat dipole and provide radiation in
nearly all directions. The reflector would no longer be effective and would

tend to carry induced currents.in phase with the driven dipole.

The proposed model is summarized in the following table:

Parameters Breakpoint Frequencies
1 1
<ZfL 4fL fL to fu 2fu 4fu >lofu

GmB - 0 dB GmB GmB-b Cg1

¢B’eB - 2¢B,2QB ¢B’eB z¢B,2eB 2¢B,ZOB Ggy
GmSL - 0 dB GmsL GBl - Figure 8

(3 dB)

$s1 - ¢Sl ¢,_G',]_ ¢s]_ -

GBl 0 dB 0 dB GBl GBl GBl

The maximum directive gain of the figure-8 pattern in the range

f <f<2f 1is given
u——u

f
Gdip(f) = 20 (fu - 2) dB

The gain then increases to +3 dB in the range 2fu5ﬁ§ﬁfu, as given by

1f
Gdip(f) 3(5-fu 1) dB.
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2.16.3.5 Directive Gain Model for a Horn Antenna

The design band of a horn antenna usually ranges over one octave -
i.e., fu;2fL. The lower coutoff frequency is usually just below fL' Within
the design band the user specifies the pattern parameters which are presumed
to apply to midband. The 3-dB beamwidths are inversely proportional with
frequency [9, page 194] and, therefore, the directivity increases with the
square of the frequency. Consequently, the midband mainbeam gain GmB should

not present more than 3 dB error from the gains at fL and fu.

As the frequency increases above fu the gain continues to increase.
However, higher order modes can occur in an unpredictable manner which result
in split beams and generally multilobing. While the directivity of individual
beams may be considerably high, the beams tend to be narrow with unpredictable

orientations.

The proposed model for horn antennas consists of the conical model
for medium-gain antennas. The model remains constant for all frequencies below
2fu. In the range from 2fu to 4fu the mainbeam makes a transition which is
linear with frequency that reduces the peak directive gain by 6 dB and doubles
the beamwidth. The sidelobe and backlobe parameters remain fixed for all
frequencies to account for higher frequency effects. The model does not change
below fL. The effect of waveguide cutoff is fully accounted for in the trans-
mission loss term. The following table summarizes ihe directive gain model for

a horn antenna.

Parameters Breakpoint Frequencies
>

<fL fL to fu 2fu 4fu 4fu
GmB GmB GmB GmB GmB-'6 Gm8_6
I ¢p:0p I 08 | 205:26, | 205,20,
GmsL GmsL GmsL GmsL GmsL GmsL
¢sl ¢sl d>sl ¢sl ®sl ¢sl
Cg1 Cp1 Cg1 Cg1 Cg1 Cgy
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2.16.4 Pattern Model for High-Gain Antennas

The directive gain of a high-gain antenna operating within its
design band is considered tco be greater than 20 to 25 dB. Types of antennas
w!.'an this classification are large arrays, such as phased arrays, and
<. wure antennas which are deszigned to produce a highly focused beam, such as
large horn antennas, reflector antennas, and lens anicuumas. The predominant
type of high-gain antenna is the reflector aperturc type in which a parabolic
dish reflects radiation from a primary feed antenna into a highly collimated

beam. Radar antennas are the most common application of this type.

The proposed pattern model for high~gain antennas is the three-
level conical model described in Section 2.16.2. For application to high-gain
antennas, this model requires a different value of the slope intercept offset

than used for the medium-gain antennas. In order to determine a practical
value of A a variety of theoretical radiation patterns have been studied.
Table 2-9 lists 22 pattern shapes based on different types of aperture dis-
tributions of the primary radiation. [17, pages 268-333] For each type of
secondary radiation pattern, the depth of the first major sidelobe was noted,
and the position of the best model fit was determined. This fitting process
consisted of adjusting the slope of a straight line passing through the point
(G

mB’
of the first major sidelobe GmsL' The intercept of this line on the gain axis

¢B)'to given the best fit to the mainlobe along one side to the level

above GmB isA. 1In Table 2-9, the values of the theoretical sidelobe gain and
A are in dB relative to the mainbeam peak level of 0 dB. As seen in the Table,
there is a relatively narrow spread in A measured. The data exhibits a slight
tendency for A to increase with the depth of the major sidelobe; however, this
relationship is not sufficiently distinct to justify the use of a functional
relationship. For the proposed model, a value of A = 17 dB is selected as

being the average of the A values listed in Table 2-9. The selection of 17 dB is
also weighted by the A values of the more commonly used types of aperture dis-
tributions: cosine, cosinez, and cosine-on-pedestal. The model appears to
provide a good fit to the theoretical mainlobe patterns representing practical
types of aperture antennas. The model fit was performed on a graphic plot of

dB gain vs ¢ of normalized curves. Consequently, the model applies to any
specified beamwidth which corresponds to linear scaling of the $-axis for the

normalized curves.
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Table 2-9 Model Parameters for Radar Antenna Patterns

Illumination First Sidelobe, dB AdB
1. Uniform -13 +16
2. Cosine -23 17.5
3. Cosine? -31 18
4. Cosine3 -39 18
5. Parabolic =21 18.5
6. Triangular =26 17
7. Truncated Gaussian, n=l, 7, 20 dB Sidelobes -21 16
8. Truncated Gaussian, n=2,4, 30 dB Sidelobes =35 17.5
9. Truncated Gaussian, n-2,8, 40 dB Sidelobes -37 15
10. Cosine-on-pedestal -22 16
11. Taylor, ©i=2, 20 dB Sidelobes =21 18
12. Taylor, n=4, 30 dB Sidelobes -31 17.5
13. Taylor, h=6, 40 dB Sidelobes =42 19
14, Hamming -46 18
15. Uniform Circular -18 17
16. Parabolic Circular =25 18
17. Truncated Gaussian Circular, n=1, 1.7 -23 17
18. Truncated Gaussian Circular, n=2, 4 =34 18
19. Truncated Gaussian Circular, n=2, 8 -40 16
20. Taylor Circular, n=2 =22 16
21. Taylor Circular, fi=4 -31 18
22. Taylor Circular, h=6 =42 17.5
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reported [16, page 5-13].
frequency the mainbeam deteriorates by 8 dB, the 3-dB beamwidth triples, and

the major sidelobes vanish.

model.

The out-of-band characteristics of high-gain antennas have been

These general results indicate that off the design

These characteristics are applied to the proposed

The proposed model for high-gain antennas is defined in the

Breakpoint Parameter Table below.

Parameters Breakpoint Frequencies
<.1lf 1.f f. to £ 4f 10f >10f
L L u u u

- -8 -
GmB 0 GmB GmB 0
65295 - 365,305 $5+9p 365,365 | 3¢g.30651 -
CnsL - 0 CsL. 0 - -
®s1 - %1 %1 %1 -
GBl 0] 0 GBl GBl 0 0

2-180
R
ke sesantansnii sl i Bt ctie "




2.16.5 oirective Gain Model for a Loop Antenna

An electrical small loop has a figure 8 pattern of a monopole

aligned with the axis of the loop. Typically, the gain of a small loop is

considerably less than that of an isotrope (0 dB) and tends to increase with
j frequency. The gain of a loop having a full-wave circumference is more than
3 dB. Higher frequencies can result in lobing in most any direction. Thus,
the model for a loop should provide the figure 8 pattern of increasing size ’
through the electircally-short region and degenerate into an isotrope at
higher frequencies. The determination of the frequency at which a loop is
no longer electrically small is presumed to be derived from the physical
diameter d specified for the loop. Let fo be the frequency at which the
circumference of the loop is one wavelength. That is,

A = Td meters.

, 300 _ 300 _ 100
Inen £ = 5— = "7 = ——

Ta S Td THe

If the design frequency of a loop is f1

the gain of the loop is considered to increase to 0 dB at fo due to radia-

with an associated gain of Gl’ then

tion resistance, as follows:

fo - f j
o ) =6 -7
o 1 !
Superimposed on the figure 8 pattern is an isotropic pattern which minimizes { 3

the null depth of the figure 8 pattern. The gain of the isotropic pattern

wio.

is proposed to lie 10 dB below the peak gain of the figure 8 pattern at all
frequencies below % fo' From %-fo to fo the isotropic gain level increases
linearly to reduce the null depth. The gain of the isotropic pattern is
proposed as
£
Gy(f) = G p(f) - 20 (1~ )

[o]

_f_c>_<f<fo :
2 — -_— i

Within the frequency range fg'to fo the directive gain is equal to that of

i o

A

the figure 8 pattern or of Ehe isotropic pattern, whichever is larger.

Above f, the directive gain remains as 0 dB with an isotropic
pattern.
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2.16.€ Directive Gain Model for a Planer Log-Spiral Antenna

The planer log-spiral antenna is a low-gain, ommnidirectional,
circularly polarized, wideband antenna which typically has a désign band
pattern of a cordioid. The antenna generally contains an absorbing sheet

behind the conducting plane to minimize back-lobe radiation.

The proposed model for this antenna is defined in the table
below. The application of a two-level beam pattern as described by a

frustrum over a plane may be used here.

Breakpoint Frequencies
Parameters 1 1
X = >
< 2 fL 3 fL fL to fU 2fU ZfU

G B —— 0 dB G B 0 dB —_—

m m
%505 T %5 % ¢B,eB ¢’B’BB
GmsL —-— 0 dB GmsL 0 dB —-—
%1 T S %1 ®s1 -
GBl 0 dB 0 dB GBl 0 dB 0 dB

The model permits the user to specify major side-lobe parameters,
if desired.

2.16.7 Directive Gain Model for a Conical Log-Spiral Antenna

The conical log-spiral antenna is a broadband, low-gain antenna
consisting of two balanced conductors wrapped in a spiral about a conical
form. The conductors are closely space at the vertex where they are fed.
The spacing increases logarithmically along the cone. The radiation
pattern of this type of antenna is typically an omnidirectional figure 8
pattern with the nulls lying on the axis of the cone. The radiation is

circularly polarized. THe maximum gain is typically O dB to 3 dB relative
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to an isotrope. Measured patterns " dicate a filling in of the forward

axial null.

The proposed model for the conical log-spiral antenna is a
figure 8 pattern of 0 dB gain for all frequencies below the upper design
frequency fU. Superimposed on this is an‘isotropic pattern with a gain that
increases linearly with frequency from -10 dB at the lower design. frequency
fL to 0 dB at fh. The gain in any direction is the larger of these two
patterns. Above fU the gain remains constant at 0 dB with an isotropic
pattern.

2.17 Antenna Power Dissapation Factor

Antennas are generally designed to operate efficiently within
their design frequency band. The shapes of the radiating elements, the
physical arrangement of conductors in the feed circuits, and dielectric
materials within the antenna are designed to provide acceptably low losses
to the total power délivered to the antenna. An important consideration in
the design are stray capacitances between adjacent conductors and between
conductors and ground such as the antenna frame or case which encloses input
feed circuitry. At design band frequencies the displacement currents flowing
through stray capacitive circuits and the power dissipated in any dielectrics

are designed to be a relatively small fraction of the total antenna current

or power.

At frequencies considerably above the design band the stray
capacitances offer less reactance and tend to short circuit the desired antenna i
circuit, This represents a flow of power that does not reach the radiating
elements of the antenna. The by-passing effects of stray capacitances
increases with frequency and generally become a dominating factor of antenna
performance at sufficiently high frequencies. In addition, dielectric losses
generally increase with frequency.

The proposed antenna model accounts for these power losses with

a third term, called the Power Dissapation Factor FD. This factor, then

includes the effective loss of antenna power due to stray capacitances within

the antenna feed circuits and ohmic losses due to imperfect dielectrics and
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Since high-gain antennas and horn antennas do

will be applied only to low~gain

conductors within the antenna.
not usually contain feed circuitry, FD

antennas and medium-gain antennas except horn antennas.

The modeling of FD is accomplished by assuming a frequency

dependent shunt resistor Rs in parallel with the antenna radiation resistance

Ra’ as shown below

? O
i :
is l Rs 181 Ra
*C%

The power efficiency of this circuit is

Jfa P
"% TP 7P
t s a

where P = power radiated = i 2 R
a a a

P = power loss = i 2 R

s s s
Pt = total power absorbed by antenna.
2
Since P = !— and P = lLu
a R s R
a s
Rs - 1

ns=
R +R 1 +R/R,

Based on the inverse frequency dependence of capacitive reactance, let it be

assumed that
1
R [
s kof
Let the initializing constant ko be established by the following conditfons.
R =10R at f = f
s a U

where fU is the upper frequency limit of the antenna design band. Then,

k = __1_‘__1____
o R £ 10 R £
s ay
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With this constant substituted into Rs which is then substituted into the

efficiency expression, we have

-1

r"1+0.1%
U

or Ngg = 10 logn= - 10 log (1 + 0.1f/fu).
\ The efficiency at f=fu= -0.4 dB. This initial loss is removed from the above ‘
!
¢

model to result in the following expression for the Power Dissipation Factor:

i f f
o F, (d4B) = 0.4 - 10 log (1 + 0.1 /fu).

which applies only for f > £y

: Several values of FD are tabulated below.
i §
P £
E /fU Fy (dB)
: 1 0.0
10 -2.6
100 ~-10.0 :
1000 -19.6

An example of this loss term applied to an antenna having an
upper frequency limit of 1 MHz is shown in Figure 2-169.

2.18 Transmission Line Factor
]

The attenuation loss of the rf transmission line between the

antenna terminal and the transmitter output port or receiver input port is

included in the proposed antenna model as a fourth term called the Trans-

mission Line Factor FL. Two types of transmission lines are considered,

coaxial cables and waveguides.

Each type is treated separately below.

2.18.1 Attenaation Model for Coaxial Lines

A wide variety of coaxial cahles exist for rf applications.
Figure 2-170 11lustrates the attenuation curves of a number of general-purpose

lines and cables E}, page ZZ-QB. Most of these are coaxial lines, but wave-

guide and microstrip are included for comparison. The various coaxial lines

have a wide spread in attenuation rate at a given frequency; however, all

the attenuation curves shown tend to increase approximately with v f.
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The total attenuation TL of a coaxial line of length L in feet

is given by

R
Ty, = (op’ A (4B

i where A is the attenuation rate of the line in dB/100 feet at frequency f.

F . Let it be assumed that A varies with frequency as

i

i A=k

[}

i where k is an initializing constant which allows the value of A = Ao to be
defined for £

f . That is,
o

o A
: i k=_°_
‘ v £
o

d —

', an A=A]f_

i ofo

Substituting this function into the expression for the total line attenuation,

f ]
FL = Gop) A7 £, (@B) =

100" o

we have

for modeling the attenuation of a coaxial transmission line. A practical
choice for f0 would be the center design frequency fo = /f;?; specified for
the antenna. It is therefore required that the user specify the length L
of the coaxial line and the attenuation rate A° at fo'

2.18.2 Attenuarion in Waveguides

The attenuation rates for waveguides are considerably less than
those for most coaxial lines, as seen in Figure 2-170. The five waveguide
samples indicated in this figure typically show attenuation rates decreasing
with frequency. The reason for this, however, is due to the effect of cutoif

frequency on the attenuation curve. Figure 2-171 presents the attenuation curves

for several modes of propagation in a rectangular waveguide E}, page 132} The
lower frequency end of each curve is asymptotic to a cutoff frequency, and the

higher frequency portion of each curve tends to increase with vf. In order
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to prevent higher order modes from occurring, the waveguide should operate only
within the frequency range which permits the TElO to exist. As seen in Figure

2-171 this mode will be ensured if the frequency range extends from slightly

3 MHz) to less than twice the cutoff frequency. In this

above cutoff (3 x 10
region the slope of attenuation curve is negative and corresponds to the
design band curves in Figure 2-170. Consequently, the design band attenuation
rate of a waveguide is reasonably accurate over nearly a decade of frequency
ranged above cutoff. As a result, the frequency dependent nature of vwave-
guide attenuation does not appear to be significant and is not included in

the proposed Transmission Line Factor. The user may indicate a waveguide
transmission line, along with the total attenuation of the line. This loss
becomes added to the antenna gain. Thus, the user should not include line
losses in the specified antenna gains. The specification of a waveguide
transmission line would also cause the model to apply the cutoff frequency

model of the Impedance Matching Factor for a horn to the associated antenna,

which may not be a horn.
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2.19 SUMMARY OF ANTENNA GAIN MODEL

The antenna gain model calculates the power gain in dB of a
specified type of antenna at a given frequency and arbitrary direction ¢, O
relative to the antenna axis. The model consists ot four independent terms
which add (in dB) to give the resultant antenna gain.

G(f,0,¢) = F +F +F, + Fp

d

where FL = Transmission line factor
Fz = Impedance matching factor
Fd = Power dissipation factor
Fp = Directive gain pattern factor.

The inputs to the model consist of fixed and variable parameters
listed in Table 2-10. Also shown in this table are the parameters which are
not currently in IEMCAP and those required for each of the four terms of the
model. The proposed model requires seven new input parameters which are not
currently used in IEMCAP. The "look" angles 94 and bg which define antenna
orientation correspond to the mainbeam pointing direction of medium and high

gain antennas, and the axis pointing direction of low-gain antennas.

The alogrithms used for each of the four terms of the model are

summarized below.

Transmission Line Factor

The transmision line factor F, represents the dB loss of power in

L
the rf transmission line between the transmitter or receiver and the antenna.

For a coaxial line, F, is a function of frequency given by

L
- L ./
Fp = -10 log { 754 A, £

where fl = Jf §

L U
For a waveguide, FL-O if Fz=waveguide algorithm. Otherwise,

FL-waveguide algorithm for Fz.
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meters required for proposed antenna gain model,

TABLE 2-10. Input par
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Impedance Matching Factor

The impedance matching factor Fz represents the dB loss of power
due to an impedance mismatch between the transmission line and the antenna
terminals. Within the design band the antenna is assumed to be perfectly
matched. Fz is calculated for a specified antenna model by one of three
algorithms:

1. Resonant dipole algorithm

2. Matched dipole alrogithm

3. Waveguide algorithm.

Eash of these algorithms is presented below.

Resonant Dipole Algorithm for Fz

First resonant frequency fl L Fu

Q of first resonance Ql =¥

Resonant frequency of order n:
fn fl[l+(“_l)A]_l
2 +0.818 ‘

where A
Q of nth order resonance:

£
log Q = 0.115 log ?§-+ log Q,

The selectivity curve for the nth resonance is given by the

modified universal resonance functions:

) £\2] 2\
MURF (£) = {1+ Q) |1-| & ‘

£
- 1
Null level N(f) = -3.0 -16.53¢ 0+238 log
For f < £,, F (f) = 10 log MURF, (f)
10 log MURF_(f)
For £>£,, F,(f) = max |
N(E)
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Matched Dipole Algorithm for Fz

For Q1<3,
10 log MURF(f) f < fl
F (f)=
0 f >f1
For 3591515,
10 log MURF(f) f<1.8f
F_(f)= oot
z 0 f>1.8f1
For Ql>15,
10 log MURF(f) fsfl
Fz(f)= MAX(10 log MURF(f),-20) f<1.8fl
0
f21.8fl

w

Waveguide Alrorithm for g,

-20 £<0.6f,
- £).
Fz(f)— 100 fL) 80 0.6fh5£50.8£L
0 £>0.8F,

Power Dissipation Factor

The power dissipation factor Fd represents a power loss in the
antenna due to stray capacitances, dielectric losses and other possible sources
of antenna degradation which generally become noticeable at frequencies con-
siderably above the design band. The model algorithm used for this term is

0 f<f
—u

Fy(6) =[0.4 -10 1og (140.1 5. £f,
U

Directive Gain Pattern Factor

The directive gain pattern factor Fp represents the antenna gain

due to the radiation pattern in free space.
Fp is calculated for a specified antenna model by one or more of

three algorithms:
1. Dipole pattern algorithm
2. Medium-gain pattern algorithm
3. High-gain pattern algorithm
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The first step for each antenna is to align the coordinate system

with the antenna axis (¢°,Od)by means of an Euler transformation and determine

the relative direction $,0) of the coupling path for which the gain is to be

calculated.

Dipole Pattern Algorithm for F

P

h

Region I: 9< X

< .5
|sin Q]

G®) = max 1

Region II: .5<

2
n
o

2n -1
o

<.75

> =

G) = | sind|

2.5n-4

where ng =
1

If G[sinOl ~1, then G =
If G<.1, then G=.1

Region III: .15¢ h
- A
2
"
G() = sin®
O) = 5.2 i)
where n, = n+.5
= 10+
1
i 5 = ; N#0.
If G|sinP| >1, then ( Tstn0] * 0#
If G<.1, then G=.1
The resultin: factor is

F(0) = 1 log G(0)

ngaéT-, 0#0.

13

h= /. for mononoli>
2

=g
it

for dipole

=4l =10k _
(n-&x), n; 10X 4
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i Medium-gain Pattern Algorithm for fp

; The proposed directive-gain pattern model for medium-gain antennas
! is a general three-level gain pattern consisting of the mainbeam gain, major

} sidelobe gain, and backlobe gain. This pattern model is similar to the exist-
: ing model in IEMCAP but has the advantage of providing continuous transitions

| between gain levels which are modeled by sections of cones.

; At any given frequency the pattern model is fully defined by the

; gain profile in each of the two principal planes of azimuth (¢-plane) and

‘ elevation (@-plane). Figure 2-162 shows an example of a gain profile showing
various parameters required to define the profile. For cases in which the
backlobe gain exceeds the sidelobe gain the profile has the general appearance

illustrated in Figure 2-163.

The azimuth and elevation profiles for the design band are defined
initially by user input quantities. 7The three gain levels are given by

Gm = GmB
Gs = GmsL
i G, = Bgy
]
' The beam angle breakpoints are given by
Azimuth profile: Bm = ¢B
Bs =¢sl
! =
Elevation profile: Bm = OB
Bs = osl
Gm-€s+ A
B‘a = qM A
Gm—Gb+ A
| B =8, GG+ (GpL>Cp1)
i b m s
Gm+Gb-ZGS+A
By = B [ (6peL<Cp1)

A = 25 dB
where the corresponding values of Bm and BS are substituted for the azimuth

and elevation profiles.
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The out-of-band changes of directive gain with frequency are
defined in terms of adjustments to the profile breakpoints as a function of
frequencies relative to the design-band limits fL and fU' The out-of-band
adjustments are presented in tables accompanying the discussions of the medium-
gain antenna models.

In general, the breakpoint of a profile is defined by coordinates

(G,B). Each of these variables can be adjusted with frequency in which the

transition between f1 and f2 is assumed to be linear with frequency. According-

ly, if x represents either G or B of a breakpoint, then the linear transition
of x(f) from (xl, fl) to (xz, f2) is given by

f—f1
x(f) = = (xz—xl) +x1.
271
After the gain profiles in the two principal planes have been
adjusted to the test frequency, the relative angular coordinates of the
coupling path must be determined in polar form. The direction of the path at
which the gain is to be calculated is given in rectangular form by (%:’QQ'

The corresponding coordinates (K%,“;) in polar form are given by

= cos cos @
Pe % c

tan
ec

Yo = sin¢c

The plane containing both the antenna axis and the coupling path
is rotated from the azimuth plane (¢-plane) by angle Wc. The next step is to
calculate the gain profile in this plane using values defining the breakpoints
of the profiles in the principal planes as follows. The gain values remain
unchanged. The beam angles of the breakpoints are calculated using a polar
equation for an elltpse having semi-axes ¢i and 01, which represent the beam
angles in the azimuth and elevation profiles of the ith breakpoint. 'The beam
angle of this breakpoint at angle Wc is given by

1+tan2W
c

Py = 1

1 2
— + 75 tan" ¥
¢12 012 an %o
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The final step is to determine the directive gain from this profile

for a beam angle B=pc. The equations of the transition lines in the profiles

are given below. The mainbeam-sidelobe transition line is given by

- s
Gy(B) = G_ + A-B N (8,<I8] <B,)

The sidelobe-backlobe transition line for the case GS>Gb is
Gm-cs+A
G,(B) = G+ A-B —Bs—— (8.<|8] <B,)
G —GS+A
G (B) = ZGS-Gm+A+B——-——m

BS

and for the case G <G, is
s b

The proposed model gives special consideration to the patterns of
linear beam arrays, i.e., Yagi-Uda arrays and log-periodic antennas. Since
the radiating elements are dipoles there is minimal radiation off the ends of
the elements. If the array is horizontally polarized, the elevation profile
is a three-level model. The azimuth profile, however is two-level consisting
of only the mainbeam gain and backlobe gain. Similarly, if the array is
vertically polarized, the azimuth profile is three-level and the elevation
profile is two-level.

For some of the medium-gain antenna models the pattern degenerates
into either an isotropic or dipole pattern at out-of-band frequencies. The
second pattern must be computed and compared to the primary pattern. The
resyltant gain is determined from the larger of the two patterns at tle given
($,0) direction.

High-gain Pattern Algoritim for F

The proposed directive-gain pattern model for high-gain antennas
is identical to the general three-level model described for medium-gain
antennas. The only exception is that the vertex offset for high-gain antennas
is A =17 dB.
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Summary of Antenna Types

The various types of antennas which may be specified for the gain

model are presented in Table 2-11. The third column defines the qualifying

conditions of some of the antenna types. Columns four and five reference the

specific algorithms for FZ and Fp applicable to each type. The other two gain
terms FL and Fd apply to all antenna types.
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Table 2-11. Summary of Antenna Types and Applicable
Model Algorithms for FZ and Fp.
No. Antenna Type Qualifying FZ F
Condition P
1 Monopole Resonant, no Res. Dip.
Dipole matching circuit Dip
Sleeve Dipole
Discone
Slot Matched Mat. Dip
2 Folded Dipole - Mat. Dip Dip
Q=1
3 Loop No tuning Circuit Res. Dip Dip +
Tuning Circuit Mat. Dip. Isotropic
4 Corner Reflector Resonant Res. Dip.
Matched Mat. Dip MG + Dip.
5 Yagi-Uda Standard Dipole Feed] Res. Dip MG + Di
Folded Dipole Feed Mat. Dip. P
Q=1
6 Log-periodic - Mat;lDip MG
Heli - .
7 elical Mat=IDip MG + Dip.
8 Spiral Log-planer Mat. Dip. MG
Conical Q-1 Dip.+Isotropic
9 Horn -~ Horn MG
10 Parabolic Dipole or Slot Feed Res. Dip.
Reflector Log-periodic Feed Mat. Dip. HG
Q=1
Horn Feed Horn
11 Phased Arra& ~ Mat. Dip. HG
12 Traveling Wave - 0 MG

Rhombic

Abbreviations: Res. Dip. = resonant dipole
Mat. Dip. = matched dipole
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3.0 NON-AVERAGE POWER SENSITIVE RECEPTOR MODELING

A detailed discussion of the waveform parameters total energy,

peak current (and voltage) and rise time is given below. The discussion is in

terms of EMI margins for each of these parameters that preserve the important
features of the average power margin presently used in IEMCAP. In particular
all margins are in terms of readily measurable quantities, such as power

spectral density calculated at the receptor's input; applicable to both

stochastic and deterministic waveforms; and adhere to a 'worst case' philosophy.

These margins are in terms of quantities that utilize both existing IEMCAP

input data and additional input data that is realistic and easily obtainable
on a given system,

In the following subsections example EMI margins are developed.
The discussions consider total energy, peak waveform, and rise time margins.
They are presented as candidates for possible inclusion within IEMCAP. They
are discussed in terms of the general receptor model shown in Figure 3-1.
Although this model explicitly considers .current waveforms the extension to

voltage waveforms is straightforward and, algorithms applicable to voltage
waveforms can ve developed.

Table 3-1 contains a listing of parameters and their corresponding
definition used in this section.

3.1 Total Energy - Deterministic Waveform

The total energy of a periodic waveform is infinite. Thus such a
waveform will always cause interference to an energy sensitive receptor.
However, in practice this interference can not occur unless the average power
exceeds the average rate of energy dissipation (e.g., heat loss due to
environmental cooling). Thus for periodic waveforms a total energy EMI
criteria should actually be an appropriate power EMI criteria. The present

IEMCAP average power EMI margins are directly applicable for this case.
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Figure 3-1. General Receptor Model

DETECTOR




Table 3-1 Definition of Variables

) P, = average power at input to detector (watts)

d
3 Pr = average power at input to receptor (watts)
! Ed = total energy at input to detector (watt-sec)
; id(t) = detector input current (amp)
| ' ir(t) = receptor input current (amp)
3 s A
{ ; ir = peak value of ir(t) (amp)
» Id(t) = (Fourier transform of id(t) (finite energy) (amps/Hz)
Phasor,as defined by i, (t) = 2.Re(l (f)ert) (amps)
! A d d
' (sinusoid) i
. Ir(f) = (Fourier transform of ir(t) (finite energy) (amps/Hz)
3 -
‘ {Phasog\as.defined by ir(t) = 2 Re(Ir(f)ert) (amps)
S (sinusoid)
E . I:(f) = level of I _(f) which induces the interference threshold (amps)
g P level at the detector
K = detector interference threshold power level (watts)
KE = detector interference threshold energy level (watts-sec)
KB = detector interference threshold peak current level (amps)
K = detector interference threshold bandwidth (Hz)
Gr(f) = spectral power density at receptor input (watts/Hz)

(Note: Gr(f) is defined for negative f.)

Br(f) = receptor input-to-detector linear current/Voltage transfer function
(Dimensionless)

2
‘ IBr(f)|= receptor input-to-detector energy transfer function

} Ar(f) = time interval assigned to an energy sensitive (sec)
g E
receptor (A (f) defines]li(f)l according to K =2Ar(f)|Br(f)|ZII:(f)IZ.)
= duration of interference on receptor (sec)
cg = variance of detector input waveform (w?tts)
g = variance of receptor input waveform 2 fb Gr(f)df (watts)
= fraction of time that a stochastic waveform peak at detector
input must exceed K to trigger interference (dimensions)
fp = frequency for which Br(f) is maximum (Hz)
f, = center frequency of a narrowband Gaussian process (Hz)
fa’fb = lower, upper frequencies defining common frequency band between
interference and receptor (Hz)
s = amplitude of the sinusoid in a narrowband (volts or amps)
Gaussian - plus - sinusoid process
= pulse width of a pulse 1nt§?ering waveform (sec)
8 = 3-dB point bandwidth of Br(f) (H2)
s
By = receptor input waveform bandwidth which induces the interference
threshold bandwidth at the detector (Hz)

Be ¥ portion of the receptor input waveform bandwidth within the passband

of Br(f) (Hz)
J:l(x) = modified Bessel function of zero order (Dimensionless)
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For aperiodic waveforms, the total energy is defined as
t2
2
E = f f7(t) dt
t1
where (ty,tp) is the time interval of the waveform and it is understood that

the reference of "1 ohm'" is used. If f(t) satisfies the condition

£2(t) dt <

it is said to have finite energy and is called an energy signal.

Recognizing that a nonperiodic function may be represented by the

Fourier transform pair, we have

EF(f)ej‘*’t df
J:f(c)e‘j‘*’t dt.

Using the transform pair and the above relationship we can form the following

f(tr)

and

F(£f)

(Ce200) at = Ef(t) (| F(red™taf] de
Loo

and by inversion of the order of integration, we have

Efz(c) dt rF(f) [ Ef(t)ejwtdt] df

[:F(f) F(-f) df.

Note that

F(E)F(-£) = |F(E)|2.

Efz(t) de [: \E(£)|% at. (3.1)

This result states that the ttal energy in a given nonperiodic time function

Then

is simply the area of the lF(f)l2 curve. The term |F(f)|2 is called the
energy-density function and expresses the energy of f(t) as a function of

frequency. Thus, ]F(f)\2 has the units of watt-sec/Hz.
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As an example, consider a signal having an arbitrary energy
spectrum passed through an ideal bandpass filter with a narrow passband
centered at frequency fl. Assume the energy transfer function of the filter

as unity for components lying in the filter passband and zero for other
components (Figure 3-2).

The total energy of the output is

2
E, = r(vo(f)[ df
oW
f1%2 2
= J v, (£) |© df,
i
f12
For a sufficiently narrow filter bandpass (narrow enough so that the input

spectrum is essentially constant over the band), the output can be approximated
as

2
E, = w|Vi(f1)| .
Solving for ]Vi(fl)]2 gives

E
2 o
lvi(fl)l =

From this expression it is evident that |Vi(fl)|2 can be interpreted as the
energy per unit bandwidth.

i) | wir) iz}

Figure 3-2 Measurement of energy spectrum
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To determine the energy spectrum of an aperiodic function consider

the rectangular pulse shown below.

orir)

-1r2 [) T2 t=—
Rectangular pulse.

This pulse can be expressed analytically as

- I T
PT(t)-l - 5 <t <y
=0 otherwise.

The Fourier transform is obtained from
h@)=£mukdmdt

T/2
= J E'jwt dt = _E:fiilT/z
-jw  {-T/2

-T/2
. E+ij/2_€—ij/2
Juw )
Converting the exponentials to the equivalent trigonometric function leads to
sinwT/2
Prlw) =T wl/2 °

The energy spectrum of the pulse signal, PT(t), is

2
2 _ .2 (sinyr/2
P2 ]® = T (w'l‘/z )

Changing from w to f = w/27 and converting to one-sided spectrum gives the

energy spectrum as

lp. ey |2 = o7% (-SL0TTEN 2 | 022 nc2(em) £>0
T nTE -
=0 £<0

i,




The energy spectrum |PT(f)|2, of the rectangular pulse is shown below

{Prien?

2r?

i\

[} vr =~

Energy spectrum of rectangular pulse.

It is seen that the energy is concentrated in the low~frequency portion of the

spectrum. The extent of this concentration can be found by computing the

energy in the first loop (that is, for |f|<1/T) and comparing this to the

total energy. The ratio, found by graphical integration, is 0.902. Thus,

90.2 percent of the energy in a rectangular pulse is contained in the band of

frequencies below a frequency equal to the reciprocal of the pulse length.

useful rule of thumb, it is often assumed that a pulse transmission system

having a bandwidth equal to the reciprocal of the pulse width will perform

satisfactorily. Actually, if high-fidelity reproduction of the pulse shape

is required, a much greater bandwidth will be necessary. However, it can be

As a

seen that a system with this bandwidth will transmit most of the pulse energy.

Using equation (3-1)(See Figure 3-1), the total energy at the in;ut
to the detector (on a l-ohm basis) is given by

2
E, = [:[Id(f)l df

(watt-sec)

where Id(f) is the Fourier transform (one-sided) of the detector input wave-

form id(t).

For a simple system with system function Br(f)’ the output

(detector input) and input are related by

Id(f) = Br(f) It(f)

where Ir(f) is the Fourier transform of the receptor input waveform 1r(t)'

Thus, the energy spectrum of the output is

2
140

1,(6) 1.%¢6)

[B (NI _(£)1[BF(E) 17(£))

2 2
15,017 |1,(0)]
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and

2
E, = ij )12 11_co)l 4.
0ot r
In keeping with the IEMCAP definition of susceptibility and standard response

an energy susceptibility is determined by the following. The energy suscepti-

bility function may be represented as shown

s /
E_(f) \\\ P

S

f f -

As in the case of the power susceptibility curve. the energy susceptibility
curve is a minimum at that frequency where the transfer function (Br(f) is a
maximum. The dector interference threshold energy level KE can be related to
the receptor input energy for a sinusoidal waveform if a time interval, Ar(f)’

is defined for the receptor. Thus, the susceptibility energy is

s 8 2
ES(E) = & (D13

I <l
2
EXOY
E 2.8
or K~ = Br(f) Er(f)
where E:(f) = the CW energy at frequency f which generates the

energy equal to the standard response energy level
at the detector input (cooling included).
The total energy EMI margin for a deterministic, finite energy waveform

becomes

2
Ea - Ifa lflffll. df
8
fo E_(f)

where (fa, fb)are the frequency limits for the energy susceptible devices.

Note that the measurable quantities are transferred to the receptor input.
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The energy received at the receptor from an emitter is given by the
area under the received energy density function times the input impedance of the
receptor. The result is

2
|It(f)| t(f) b L

where IIt(f)IZ = transmitted energy density 22552225 (1 ohm)
b = bandwidth factor for the emitter_(Hz)
t(f) = transmission loss (dimensionle.s)
Ty = input impedance of the ith receptor (ohms)

This assumes |It(f)|z is a constant over bandwidth b,

From the discrete equation notes(6)
10?2 = (V2q)?

q = current spectral level (amps/Hz)
The broadband point energy EMI margin is then given by
«Ie(eybr,
epmd(f) = r ..
E:(f)

Converting to decibels, the broadband point energy EMI margin for an aperiodic

signal becomes

EPMD(f)(dB) = Q(dBuA/MHZ)+T(£) (dB)
—
+B(dBMHz)+ RIR - Er(f)
~T7(£) (dBuA)
where EPMD(E)(dB) = 10 log epmd(f)

QdBuA/MHZ) = 20 log (vZq/1071%)
T(f)(dB) = 10 log t(f)

B(dBMHz) = 10 lo ~93
10

Rig(dB) = 10 log r
Fo(£)(dB) = 10 log ES(£).
To determine the broadband integrated energy EMI margin, the
derivation parallels that of the broadband integrated margin of the IEMCAP.
Using Dr. Weiner's notation,(6) the derivation of the broadband integrated

margin is presented below.
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The point energy margins are converted to a margin density
empd(f)
b
Next, convert to a log-log scale and plot [epmd(f)/b] vs. log f

and connect straight lines between the data points as shown below.

| 1

loglolcpmd(f)l
b

i 1 1 'y 1 [

o 4 t 3 \ y =
log fa log fl log fé log f5 log fh log ts log tb log £

This curve represents the broadbanrd margin density when plotted on a log-log
scale. The broadband integrated EMI margin is obtained by finding the area
under the curve.

To illustrate how this is done, focus attention on the r-th and

(r+l)-st sample frequency as shown below.

epa(f
log, (=5 ] \
'
'
' []
' !
]
t i
log fr log fr+l log £
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The straight line connecting the points is of the form

epmd(f) £
logm[-‘r—] < a log, (T) + C.
r

When £ = £, 10810(fr/fr) = loglo(l) = 0 and

enmq(fy)
C = log,, [—b_d“i]

Thus, C is the value of

epmd(f) ]

loglo [

where £ = f} and a i{s the slope of the straight line. Letting f =

the equation of the straight line, we have

erd(fr+1) £ epmg(fy)
log), [——% 1= e log)0(5) + Lok, [~5
) r

30lving for the slope, yields

ermg (fre1) Flog [epmd (fr) ]

1ogy o[ 107 b
a =

1o (fr"‘l)

€10 1

r

For simplicity, let
: epmd(fr)
grb )
3-11
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1

? The slope is then given by
{

| log)o [g(r+1)b/gr J
}

b
log (£ /1T,)
{
1 ‘ Also, let
epmy ()
| =
| &) ==

The straight line can now be written as

log, g (£)] = a log (ﬁ—r) + 108 [, I

Rearranging terms, we have 3

gb( f ) . f ,f a
loglo lg—-J = a lOglo (F‘) = IOglo [ \-t':.) ] .-
r r

ry i'

gb(f) . a

it follows that

: fry r
i
| and . a
(f) =g (=) .
gb rb rr

This is the equation for the approximation to the margin density when the
straight line on a log-log scale is converted to the corresponding curve
on a linear scale. The area under the maergin density in the frequency

interval (fr, fr+l) is given by

f f

r+l r+l a
£
512 = f Bb(f) af = j grb(f—) ar
r £ b o
r r
t
Ty 1 a+l r+l




Ty 1
=78 a+1
(fr)

((s

r+l)a+1 _ (fr)a+1]

a+l

_ 8’\) [(fr«t—l) - ].

= a + l (f )a r
r

To obtain the broadband integrated EMI margin over the entire frequency
range of interest, it is necessary to sum the contributions from the
area under each consecutive pair of sample frequencies. This is
indicated by the f$ollowing

n

c
= Z 8,)

l‘r

r=1

where n, is the total number of sample frequencies due to the emitter

and receptor in the frequency interval (fa,fb).

From the above, the conclusion is that the same technique used
in IEMCAP to obtain integrated margins is equally applicable to the total
energy (aperiodic) integrated margin calculation.

3.2 Total Energy - Stochastic Waveform

As with periodic deterministic waveforms, a stationary stochastic
waveform is of infinite duration and, thus has infinite energy. Therefore,
the present IEMCAP average power EMI margin is then appropriate in order to
predict whether dissipation (e.g., heat loss due to envirommental cooling)

exceeds energy buildup. The latter is necessary for interference to occur.

There may be instances where certain emitters may be considered
sources of '"Switched" stochastic waveforms in that an otherwise stationary
process is turned-on and turned-off at known intervals. For example,
consider a rotating reflector antenna that is emitting narrowband Gaussian
noise within a receptor bandwidth. The total energy at the detector of
the receptor can be determined from

3-13
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Ed = APd

where A is the duration of interference on the receptor and where Pd is given by
po= | c (0B (5)|%s
d r r )
0
As in the deterministic case, the detector interference threshold energy level is
E _ 2 s
K = |Br(f)l E ().

It follows that the total energy EMI margin for ''switched' stochastic waveforms is

E £ G (f)
= AJ b £ 4f

s
fa Er(f)
where (fa, fb) in the frequency limits for the energy susceptible device.

From the '"Discrete Equation Notes," we can relate the above energy
margin to the power spectral density function in the IEMCAP. A value of broad-
band emitter power spectral density is assigned to each sample frequency. The
broadband power received at a receptor from an emitter is given by the area
under the received power spectral density times the input impedance of the

receptor. This may be defined as

Gr(f)(bw)rir
where G (£) = G (f) t(f)
Gt(f) = emitter power density at frequency f (watts/Hz)

(bw) = FIM bandwidth (Hz)

and t(f) and r, areas defined previously.

The broadband energy point EMI margin (switched stochastic) is

then given by
§ (A)Gr(f)(bw)rir
epms_f) = s
E_(f)
(A)G, (£)£(£) (bw)
s
E_(£)

From IEMCAE we have
G () = q (bw),
2 2 £)
Then epm_(£) _ FA)q (bw) "t ( .

s
Er(f)
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Converting to decibels, the broadband point energy EMI margin for the switched

stationary signal becomes

EMP_(f) (dB) = A(dBsec)+Q(dBuA/MHz ) +BW(dbMHz)+T(£) (dB)
- B.(EXdBsec)-T5 (£) (dBuA)
where EMPS(f)(dB) = 10 log epms(f)
A(dBsec) = 10 log A
Q(dBuA(MHzZ) =

20 log 4\,

BW(dBMHz) = 20 lo b.LG_ .
- 10

-

T(F)(dB) = 10 log t(f)
Kt(f)(stec) = 10 log & (f)

— 1°(f)
1°(£f) (dBpA) = 20 log .
r -6
10
The integrated energy EMI margin for the switched stationary case is

determined in the same manner as that presented in the deterministic total

energy case.

3.3 Peak Current/Voltage - Deterministic Waveform

Some receptors (e.g., many digital devices) are sensitive to the
peak value of a waveform (e.g., voltage or current). An upper bound to this
peak can be given in terms of amplitude spectral density frequency domain data.
This bound can be used to define a conservative estimate of a peak current
(or voltage) EMI margin for deterministic waveforms in terms of receptor input
quantities. The remainder of this section pertains to peak current but the 3
peak voltage deviation can be performed in an analogous manner. Consider the
detector current given by

1,(0) = ﬁlr(f)sr(f)ejwt df .
Note that Ir(f) is a superposition of impulses for periodic (infinite-duration)
waveforms and a continuous function for finite-energy (finite-duration)
waveforms.

It follows that(l)
|44¢0)|< rlrt&f)llsr(f)l af,
max d

ce
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Also, the detector interference threshold peak current level K is given in
terms of a CW receptor input level | Ii(f)l by
_ | S
K= [B.(D)] [1(D)].

An interference margin may be defined by

[i. ()] (£ [1.(D)]
d f b e af

<
K max £, |15(D)]
Where (fa’ fb) is the frequency limit for the peak current susceptible device.
For IEMCAP a peak current EMI margin for deterministics waveforms (compatible
with "worst case" philosophy) is defined by
b 10|

¢ — df,
a [12(D)]

Again, to conform with the IEMCAP definition of susceptibility and
standard responue a peak current susceptibility will be defined. The peak

current susceptinility function may be represented as shown below.

’

s ~
(6 "

f g
o]

As is the case of the power susceptibility curve, the peak current susceptibility
curve is a minimum at that frequency where the transfer function Br(f) is a
maximum. The detector interference threshold peak current level K can be

related to the receptor input peak current for a sinusoidal waveform by

K

S
iBr<f)|I,(f>

the peak CW input signal at frequency f needed to produce

where I:(f)
the standard response peak current level at the detector

input.
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To get an understanding of how "worst case' the above equation is,
s

‘ consider a rectangular pulse train as shown in Figure (3-3) 2)with parameters

as defined in Figure (3-4).(3)Using this example, we will demonstrate how

IEMCAP would make use of the above equation. Assume lI:(f)] = 1 and determine

!
| [1.(6)].
% From Figure (3-—5)(,4) the power density according to IEMCAP is:
22
\ =
; PBB(f) 2 AT fB
2 =2 3
| = 2x(.1) "x(1.25x10 ")x4x10
, = 1.25 WWatts 0<f<f
Hz ——'m
6 (En\2
' = 1.25x10 (E_)' £f
Bandwidth = ;—T = L o 4 kHz
2x1.25x10
1 1
f = —=—= ———————— = 2,55 kHz
" " rxl.25x107°

The Fourier Series representation for the rectangular pulse train can be
determined from

0o

i 1) = 5 o BT
| n
' n=— 00
f
} where t1+T
_1 -jnwt
i ®n 5T J LOE 70 4,
t
i
T = period of pulse train.
The coefficients are
si .
- at T ex __var_)
%n T T T Pl 3T G
T

where w = 2q/T.

Thus, the complete Fourier series expression for i(t) now becomes

- sinnn{/T amn
ey = 7 =& [ ant/T ] exp[j T (¢ le)]

— ————

n--mT

or
! at , 2at sinnmt/T 2t
- () = =+ /T 9% T (t-t/a). (3.2)
j
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Required Input Parameters:

a = volts/amps into designated load, Ry,
T = pulse width (seconds)
( 1)
ry = bit rate ry = T (Hertz)
fl = 30 Hz
f, = 3.18/7 H=z

Frequency Table (Hz):

-P
. . . . ’ +
fﬁ' lfh, th, 35fh, Sth, fh fh (1L +107)

Figure 3-3 Rectangular Pulse Train
(RECTPL)
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Figure 3-4 Mini-System B2 Input Deck
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Rectangular Pulse  Pgplt) = :’Azr;!fB . :0< 1<y, Watts/Hz
2
Panlf) = 2A%7% ) 6>t
= T —_— H
88 8\ 7/ M
where
1
bandwidth = —
2r
fB = bit rate
A = peak current/voltage into 1 ohm
p 1
M nr ]
4 = pulse width
|
o oa2,2
PBB(" 2A°T '8
2 4
P ot = 242721 ('l‘-
| B8 B\,
S S
0 fm
bandwidth

Figure 3-5. Rectangular
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When a current i(t) flows through a one ohm resistor, the powered dissipated is
P = <12(t)>

T/2

where <12(t)> = I iz(t) dt
~T/2

==

for a periodic signal.

Hence, the power in a rectangular pulse train is given by

P - 23212 sinnnt /T 2 B 50
T 2 ont/T ‘ T

To convert to a continuous spectrum, multiply P(%) by T and we have
P (n) = Zazrz sinnmt/T 2
BB T anmt/T :

where PBB(n) is the envelope of P(n/f).

Using the values for the above example: simrxnxl.ZleO_4 2
b (o = 220D 20255107 .25x107>
BB .25x1073 1x1.25%10 xn
.25x1073
- f$ind0n z
= 1,25x10 ( m .
‘2—[1

A plot of PBB(n) is shown in Figure (3-6). Figure (3-6) also shows a plot of
the IEMCAP model as determined from Figure (3-5) and the required frequency range
as defined by Figure (3-3) and Figure (3-4). The required frequency range is a

user input option.

To convert to a continuous current spectra, multiply i(t) by T to

obtain
TnT
n, .amps, _ T
ie(T) ( Hs ) = 2at ot
T

and with the above parameters

1,(n) = 2x.1x1.25%10™% (%“2@>

En

- 25x10‘6 84in90n\ |
3
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m—

1.4

1.2 ‘,f/“k

1.9

PBBxlo"6 Watts/Hz

.*\

30 Hz

3

25.44 kHz
Required Frequency Range
From Figure 3-3.

Figure 3-6 Plot of IEMCAP and Model PBB
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The representation for ie(n) is shown in Figure (3-7).

IEMCAP model may be converted to current spectra by

From Figure (3-5), the

2 P__(f) o<f<f
amps - = BB — —m
1t(f)( Hz ) fB

_ /2x1.25x10’6
4x10°

- 25x107% ames
! Hz

= 25x107° (fﬁ Ye £>f
f m

Ir(f) is shown in Figure (3-7) for the above example.
the MIL-STD-461A signal port spectra.

Figure (3-7) also shows

Using Figure 3-7, the effects of computing the peak current margin
from equation (3-2) may be determined. Recognizing that ie(n) is of the form 1

sinx |
X
t

The integral (normalized to the peak value)

* sinx
Si(x) = o '—x dx
may be found in tabulated form in many different texts.(s)

3
{ Thus, the peak is defined by
)

i
‘ P, = Si(x) (3.3) ‘
; vwhere ipe = peak current associated with 1e(n)
’ The integral using the IEMCAP model is given by
; i = X (1+ln ) (3.4)
5 PIEMCAP *u Xn
1
!

|
|

where Xy = value of x corresponding to fm of the model.
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ixlO-bamp/Hz

20 ¢

15

10

o

10 n — 12 14
40 f(kHz) —» 45 56

&~ 30 Kz-25.44 Hz Required —-.{...__ Nonrequired Frequency Range———————3
J Freq encx/ﬁange
-5

Figure 3-7 Plot of 1 (n), IEMCAP Model, |1e| and MIL-STD-461A
Signal Port Spectra
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The normalized models are shown in Figure (3-8) and the peak current calculation
for equation (3-3) and (3~4) for various required frequency ranges are tabulated
in Table 3-2. 1In Table 3-2, the column showing the ratio of the peak current

(i /i_ ) represents the factor by which the IEMCAP model over predicts
Premcar Pe

the actual peak current for the above example. Thus, as shown in the table,
the actual peak current for a rectangular pulse train may be over predicted by

as much as a factor of two using the IEMCAP model.

In terms of the r.m.s. currents, (normalized to one microamp) the

narrowband point EMI margin from IEMCAP is
Y aa—0.2 .
(1/10 °) tij(fz)

N
Mplfe) = 1 /10782
s
where tij(fz) = power transfer function of coupling path between j-th
emitter port and i-th receptor port
is = the receptor r.m.s. current equivalent to the power

susceptibility level

f, = f-th sample frequency.
Converting to pegk, we have

N (4171070 %, (e
PP(fp )= 1
(12/107%2
where Ii = peak receptor current equivalent to the peak

susceptibility level
and converting to dB,

wﬁp(fg)(ds)= T, (£2) (dB)+1(dByA) -1 _(dBya) ;

8]
where %P(EQ‘)' 20 log mgfl;fz)

(fg)= 10 log t, (fg)

T
ij 1
21
1(dBua)= 20 log =5
10
IS
r
1076

Is(dnua)- 20 log

s o st
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Figure 3-8. Normalized i (n), IEMCAP, 11 e| and MIL-STD-461

Signal Port Spectra
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j
; 1 1 1
: Required Frequency Pe PrEMcaP PrEMCAP
: Range (kHz) X (amp/Hz) (amp/Hz) ipe
4 1.57 1.36 1.45 1.07
3.14 1.85 2.14 1.17
12 4.71 1.61 2.55 1.58
16 6.28 1.42 2.84 2.00
20 7.85 1.56 3.06 1.96
24 9.42 1.67 3.24 1.94
28 11.0 1.58 3.40 2.15

Table 3~2 Comparison of Peak Current Calculations
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The broadband emitter current spectral density is frequency
quantized by the computer program. A value of broadband emitter current
spectral density is assigned to each frequency. This value is the maximum
value assumed by the current spectral density within the corresponding fre-

quency interval associated with the frequency. To evaluate the broadband

¢ e e A ——— e —

current point EMI margin at each sample frequency, we require the transfer

| function of the coupling path between an emitter and a receptor and a band-

% width factor. b. As defined for IEMCAP, the bandwidth factor, b, is assigned
to each sample frequency. It is defined according to Table 3-3 of the

‘ User's Manual (Vol. II. p. 40) and is repeated below.

Table 3~3 Bandwidth Factor

EMITTER RECEPTOR BANDWIDTH
‘ R d
equire Required Min(bemit’brec)
i Required Non-required Min(bemit,bstd)
| Non-required Required btec
{ - -
| Non-required Non-required bstd

The standard bandwidth (bSTD) is associated with the EMC test instrument and
is defined on page 30 of the IEMCAP User Manual. The broadband peak current
spectral level margin is determined by

f T

Iid(t)|max < J a |_r(f)| y ==|It(f)|b
k s s

£, (1200 [1_(£)]

where it is assumed that lIr(f)] and |I:(f)] are constant over b. The

received peak current is

[T (] = [1(O] VE D

where lIt(f)I = peak current spectral level at the emitter.
Thus |1.(£)[b i |1,.(6)] "‘11“) b
s s
|13¢6) | l12¢6) |

and, the peak current broadband point margin for deterministic signals is

defined by
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Piecewise constant j-th emitter broadband power spectral
density (watts/Hz)
B
W) o e —
] ]
'
o 7 ?
b
Piecewise constant power transfer function of coupling
path between j-th emitter and i-th receptor
t (¢, T -7 ———— = ——
13( ¢ N
0 e T
b
Piecewise constant i-th receptor susceptibility curve (vatts)
f(f) T T e
[}
|
i '
by
0 1 f
b

A s



[T (6)] vE_ (B b
mgp(f) = = -

s
l1 (6)]
From the IEMCAP notation the current spectral level is defined by

_ip/ V2
7 “(bw)

where ip peak current.

At the emitter

ip = |1, (O)bw)
and
a=11.(0]/V2
It follows that
|It(f)| = V2q.
Therefore, the peak current broadband point margin may be expressed as
B v2q VtiJZf) b
mPP(f) = s ’
15|
Normalizing q by luA/MHz = lO-lZA/Hz
fB by 1 MHz = 106 Hz
b by 1 MHz = 106 Hz
I_by IuaA-= 1078 A,
we have 2 £
Y2q B b
1) (T b5 (9 ~24_. 6. 6
mg (£) = 10 0 10 x 10 "~ "x10°x10
P e s 2 (10-6)2

(9

Converting to decibels, the broadband point EMI margin for a periodic signal

becomes
MPP(fQ)(dB) = Q(dBuA/MHz + FB(dBMHz)
+ Tij(fz)(dB) + B(dBMHz) - Is(dBuA)
where Mgp(fg) = 10 log mgp(fg)
Q(dBuya/MHz) = 20 log !gs:i%>
10
Tij(fk)dB = 10 log tij(fl)
b
B(dBMHz) = 20 log<1—6>
0
IS
I_(dBuA) = 20 1og( - )
8 10
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3.4 Peak Current - Stochastic Waveform

The peak value of a stochastic waveform cannot be given precisely.

Therefore, the peak waveform susceptibility of a receptor must include, along

with K, an estimate of the fraction of time that a stochastic waveform peak at
! the detector input must exceed K in order for interference to occur. This

estimate is denoted o.

Let it(t) be a stationary stochastic process which is adequately
described by first and second order statistics (means and autocorrelations).
Then the same holds for id(t). For simplicity also assume ir(t) has zero mean.

Then id(L) also has zero mean. The variance of id(t) is given by

2 2
oy [:Gr(f) IBr(f)I df.
Now, from Chebyshev's inequality(l) the probability of id(t) exceeding K is
bound by 02

p(| 1,(0)|>K) <£§.

Define the susceptibility margin as
p(l1,(e1]>K)
o
where a is the probability (lid(t)|>K) which should not be exceeded. Then
from above
2,2
PO PR) /K
o o

Therefore, an indication that a stochastic waveform is compatible, i.e. does
not cause interference, is given by
2,,2
g, /K
d/
o

<1.
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We now consider the computation at the input to the receptor.

The variance of ir(t) is given by

2
o, = f” Gr(f)df.
-0 2
Then, using the following approximation for T4 » we have

od2< ]Br(fp)lz f” 6 () af
[¢]

where fp is the frequency for which Br(f) is maximum.

Thus,
2 2 2
aq'< (Br(fp)l o, -
o : 2
Dividing the inequality by K”, we have

2
042 <lBr(fE)| 5.2

d
e r
Kz K
s
where K = IBr(fp)l (Ir(fp)l
2 2, .s 2
and K® = |Br(fp)] lIr(fp)l .

Substituting K2 into the above equation, it follows that

0,2
s 2
13 )]
is an upper bound to
%?
K2
Therefore, the requirement for compatibility is the following
0.2
<L
ol T(E )]
and a peak current EMI margin for stationary stochastic processes is given by
2
B Or
mpp(£) =

s 2°
allt(fpﬂ
The current spectral level from IEMCAP for a stochastic waveform

transmitted by the j-th emitter is given by
[Prl(b“) } 1/2
9 =l .
(bw)rje

This expression is only for Gaussian noise.
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Following the identical steps outlined above for the peak current deterministic
interference margin, the broadband point EMI margin for a stochastic signal can

be determined. From IEMCAP, the variance of ir(t) is
f
2 b
o, = ff w, (£) tij(f)df
a
where orz is the variance due to frequency components in the interval (fa,fb);

wl(f) is the power spectral density and tij(f) is the power transfer function

of the coupling path between the j-th emitter port and the i-th receptor port.

It follows that

2 _
o = wl(f)tij(f) b
= ¥(bw) £, (Db
= q (bw tij
PT/(bw) 2
where wl(f) == = q" (bw).
je
Thus, 5 qz(bw)tij(f)b
r p

which is the broadband point EMI margin for a stochastic signal. Converting

to decibels, the broadband point EMI margin for a stochastic signal becomes.

MEo(£,) (dB) = Q(dBuA/MHz) + BW(dBMHZ)
+ Ty ;(£,)(dB) + B(dBMHz) ~T_(dBuA)- a(dB)
where
bw
BW(dBMHz) = 10 log(-—-6—)
10
a(dB) = 10 log(a)
and bw = field intensity meter (FIM) bandwidth,
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To determine the broadband integrated peak EMI margin, the
derivation parallels that of the broadband integrated margin of the IEMCAP.
(6)

Using Dr. Weiner's notation, the derivation of the broadband integrated peak

margin is presented below.
The point peak margins are converted to a margin density
B
mPP(f{
b

Next, convert to a log-log scale and plot [mgp(f)/b] vs. log f and

connect straight lines between the data points as shown for the energy density
calculation above. Thus, the same technique used in IEMCAP to obtain integrated

margins is used to obtain the peak current integrated margin.

3.5 Peak Current - Normal, Stationary Waveforms (Broadband Gaussian)

A peak current EMI margin applicable to normal, zero-mean,

stationary waveforms is defined by

pl(1,(£)>K]
snim__ = —m———

pc o —x2

2+ 2
vz “a
= 1
o r” 5 — e dx
K 7d vm
where snimpC = stationary normal interference margin for peak current

with all the parameters as defined previously. For compatibility

snimpc< 1.
From the previous derivation
ad2 <|Br(fp)|2°r2
and %4 <|Br(fp)| o,
where fp is the frequency at which Br(f) is maximum,
It follows that

2

20

f% 1 e d dx <
K Sav/m

2.2

i 1 eZIBr(fp)I o, o

o Br(fp) or v .
K

The right-hand side of the above inequality is also a suiltable susceptibility

margin.
3-34




Making a change of variable of integration.
x
Let y = ’
Br(fp)l
Th dy -
en =
|Br(fp)[

Substituting the limits for x, we have
when =K
K

ENEN

s
|5r<fp)l (Ba{E]

8
wlIr(fp)l.

A < X

and from

Next when

<K<
[}

-]

Substituting the above into the right-hand side of the inequality, we have
@ 2 2
Y |B.(£)]
£ ZIBr(fp)lzcrz
2 1 e
= dy|B
a) TB.CE o7 viB (£
N ¢
122
Thus, after a change of variable of integration this margin becomes
2
-X

2

20
JZ 1 e r dx.

o | Ty

s
| IIt(fp)I

Further, let

Substitution of x limits of integration, we have for the lower limit
|18(£ )|
rp

Y2 o
b g

u =

and the upper limit

P




Then, the above margin becomes

~20 2u2
r
/2 L. 2°r2 du V20
o or7w r
s
5ty
V2 o
r
or
2
_2 -u du
o s
|22t )l
Oy
which becomes 2 c(éllf(f )
2 e-u d = erf /———-2—20
G;TT lIS(f )| a
r'p
20
r
where(7)

2
erfc(u) = 7%- fw et dt
u

is the complementary error function.
Hence, the peak current EMI margin for a normal zero mean, stationary waveform

RCY
erfc S ).
r

snim . = —m—rr———

pc o

is given by

To determine the argument for the complementary error function, we have
2 f”
e} =
r oGr(f) df .

For an equivalent point margin

02 -
r = fb G (£) df = 5 ()b

where b is as defined in Section 3.3 and Gr(f) is constant over the frequency

interval.
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From IEMCAP we have for a Gaussian stochastic process

6.(£) = (@ bwye(n).

Hence, crz = 2(q)2(bw)t(f)b.

Then, the argument of erfc may be determined by taking the square root of the
above and multiplying by 1/v2 to obtain

s
_1( 1)1 )
vz \¢ 2w ee)n /2

Given the above a value for the erfc may be computed and the peak current point

margin for a normal, zero-mean, stationary waveform (snimpc) determined. Con-
verting to dB, we have

SNIMPC(dB) = 10 log snimpc,

The integrated EMI margin for a normal, zero-mean, stationary
waveform may be determined by the same method as presented in Section 3.1.

This method requires that the point margins be converted to a margin density
defined by

snim_ (f)
—_pc
b

Then, convert to a log-log scale and plot (snimpc (f)/b) versus log f and l #
connect gstraight lines between the data points.




3.6 Peak Current - Narrowband Gaussian

}
!
1 A peak current EMI margin applicable to narrowband Gaussian wave-
forms expressed by

y

i

ir(t) = xr(t) cos (Zﬂfot) + yr(t) sin (2wfot)

i where xr(t) and yr(t) are stationary, normal, independent zero-mean processes
‘ with identical autocorrelations can be derived in a manner similar to the
; derivation for peak current susceptibility margin applicable to normal, zero

i : mean, stationary waveforms described in Section 3.5. The result is (Rayleigh

statistics‘l)) ?
i j
X
0.2
L Xe T dx,
o orZ
s
b))
This integral may bezevaluated as follows:
=TT
i L] 2o 2
' x ¢RI
| L r o
i
! s 2
. Then, we nave - lIr(foﬂ
20,2
nbg =& —— .
pc ]

As previously determined, (Section 3.5) the exponent is determined by noting

that the received power is

o 2 = 2% (bwe(n)d

where all variables are as defined previously. 7

The ratio of the above (si:nal-to-interfernce) at the input is

8 2 1
|12 ) |

4(q) 2 (bw) e(£)b
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Given the above, the exponential above may be evaluated and the peak current

point margin for a narrowband Gaussian process determined. Converting to dB,
we have
NBGPC(dB) = 10 log nbgpc.

The integrated EMI margin for a narrowband Gaussian waveform may
be determined by the same method as presented in Section 3.1. This method
, requires that the point margins be converted to a margin density defined by
nbg c(f)
b

Then, convert to a log-log scale and plot (nbgpc(f)/b) versus log f and connect

straight lines between the data points.

3.7 Peak Current - Narrowband Gaussian Plus Sinusoid

For the case where a sinusoidal signal is also present in the

narrowband Gaussian waveforms, we have

1.(0) = (xr(t)+s)cos(2nfot)+yr(t)sin(anot)

| where a sinusoid of amplitude s has been added to the waveform of Section 3.6.

The corresponding susceptibility margin becomes (Rician statistics(l)) :
o ;
-(x%4s2)

2
X 201' J XS
g2° o(orz) dx

|Is:f )|
r o

1
o

where g%(x) is the modified Bessel function of order zero.

Define z as the signal-to-interference power ratio at the input.

Thus, 2 ?
z = —'s_‘ :
2°r2 ;
Then the integral above becomes i

-x" -z
thZ t
1) x_ J(&fﬂ) dx. !
a c. 2 o\o, i
r {

s
|12¢£ )|
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In general, J (y) may be shown to be_x?

J(y)=1+y—+... ze

when y<<Ll
Using this approximation, the above integral becomes
2
-X~ -z
2% 2
__]_._ X e r JO(EV/Z—Z.
a | o 2 Jr
r
s
l1_(£ )]
2
X
25 _2
b
11 x
e |0, c2°© dx
s
lrf>|
for z<<1. This is the Rayleigh density function and the interference margin

may be determined as discussed in Section 3.6.

When z>>1, the modified Bessel function of zero order may be shown to be

y
g, = .
° T Y my
Under this condition, the integral above bec0mes(8)
* - (x%+s?)
20 2
1 X £ S (%8
3 - © —)dx =
o or2 (o] (crz
J J1CE)
r -(x--ea)2
2q 2
% 1 e Oy dx
V2r o
r
s
J [Ir(fo)[

which 18 observed to be the Gaussian or normal density function. Thus, the

interference margin may be determined as discussed in Section 3.5.
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3.8 Risetime - Bandwidth

If a receptor s susceptibility is a function of the "
; waveform, then it will be sensitive to bandwidth.
: rise time and bandwidth of systems is

rise time" of a
The relationship between

T,B =k

where
T, = rise time of receptor

B = bandwidth

and k is a proportionality constant for the receptor. Using this relation-
ship, the susceptibility of a receptor to the rise time of a given waveform

may be determined. Thus, a bandwidth susceptibility margin for both deter-
ministic and stochastic waveforms is given by

w

Hmm IH

' where B, is

the portion of the receptor input waveform bandwidth within

. the passband of Br(f), and B: is the receptor input waveform bandwidth E
. which induces the interference threshold bandwidth at the detector.
(‘- where is

r the portion of the receptor input waveform bandwidth within
the passband of Br(f), and is the receptor input waveform bandwidth
which induces the interference threshold bandwidth at the detector.

io
i
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4.9 NONLINEAR INTERFERENCE MODELS

This section will provide detailed mathematical derivations of
all the models implemented in NONLIN. Since the basis of these derivations
is the modified nonlinear transfer function, it will be discussed in great
detail in section 4.1, with particular emphasis on its derivation from the
more general Volterra series. After the general form of the nonlinear
approach is developed, it will be used to derive the model used in NONLIN to
describe desensitization. This model will then be used to examine the
limitations and approximations of the nonlinear transfer function approach,
as well as the relationship of this approach to the Volterra analysis. The
remainder of Section 4 will then be devoted to the derivation of the remain~
ing models implemented in NONLIN, with particular emphasis on the assumptions

used to obtain the models in a form suitable for a system level analysis.

4.1 The Modified Nonlinear Transfer Function Approach

4.1.1 The Volterra Series

The theory of functionals and functional expansions was first
proposed by Vito Volterra in 1930 (Volterra, Reference 6). He established a
working definition of a functional by noting that, just as a function oper-
ates on a set of variables to produce a new set of variables, a functional
operates on a set of functions to produce a new set of functions. Using
this definition, Volterra observed that an arbitrary functional could be .
expanded in what is now called a Volterra Series, in a manner similar to :
the power series expansion of a function. He showed that every homogeneous
functional of degree n, acting on an arbitrary function, x(t), could be

written

b b
F [x(t)] = L Lkn(cl. Cps Byr e BdX(E)) e e (8 )
dCl dCz---dcn (4.1)

where {a,b] is the interval appropriate for the problem being considered.




Observing that 4.1 holds, the Volterra series expansion of any arbitrary

functional, G[x(t)], may be written:

Gix(t)] = Fj Flx()]

=k * Lkl(C) x(L)dg

b b ) ,

+... (4.
o [ epxepxeyaa, 4.2)

a ‘a
The first important application of this Volterra series expansion to the
analysis of nonlinear circuits was by (Wiener, Reference 7) in 1942, who
related the output of a system, y(t), to the input, x(t), by a Volterra

series of the form

ye) = § vy (0 (4.3)

where the Y, are given by

y1(t) = rh(r) x(t-1) dt (4.4) i
—m o0
yz(t) = Jj;[ﬂrz(T1’TZ)x(t-Tl)X(t-TZ)dTldTZ (4.5)
and y,(t) = Eo"'Lhn(tl'"Tn)x(t'Tl)""‘(t'Tn)dTl"'dTn (4.6)
The simplification of equation 4.3 will provide the theoretical basis for our
discussion of nonlinear interference effects.

In analyzing this equation, Fourier transforms will be performed
on various terms in the expansion, resulting in time and frequency domain

representations of the input/output relationship.

Begin by noting that hn(Tl...Tn) has been defined (Signatron,
Reference 8) as the nonlinear impulse response of order n, and that the

Fourier transform of hn

00

r@ (-]
Hn(F . .fn)- J ...{arn(rl...tn)-

expf-jZW(fl1Ih..fnTn) }drl...drn 4.7)




is defined as the nonlinear transfer function of order n.

It is apparent
that the inverse Fourier transform

h (T)...T)= L» ... [mﬂn(fl,..,fn)
explj2n(£

[Tyt T ) HAE L dE (4.8)

will allow expression of equation 4.3 in terms of these Hn(f). Tﬁereforb, if

equation 4.8 is substituted into equation 4.3, and the convolutions over Ty
are performed, y(t) is found to be

vy = £ [ ... [:H“(fl..,fn)x(fl)x(fz)...X(fn)

-0

exp{j2m(f1+£+. . +£,) t}df

4
e 1...dfn (4.9)
The convolutions over Tk with e’ k'k have produced X[fk], which is Fourier

transform of the input signal and also the frequency domain input signal
spectrum,

By noting that the frequency spectrum of y(t), Y(f), is given by
the Fourier transform of y(t),

o0
o]
Y(f) = [:)ngl J:;{aﬁn(fl""fn)xl(fl)'"xn(fn)
exp{jZn(f1+..+fn)c}df1...dfnexp{—janc}dt (4.10)
equation 4.3 may also be expressed in terms of the output frequency spectrum
f ]
Y(f) = a1 [:;'[,Hn(fl"'fn)xl(fl)"'Xn(fn)

exp{-jan(f-f -f,...f )t}dtdf....df (4.1
Ij; 172 n 1 n

Since the unit impulse is defined by the Fourier transform relation

G(f-fl-fz...-fn)- fwexp{—jZW(f—fl...—fn)t}dt % .12)

0
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equation 4.11 may also be expressed in terms of the input/output frequency

domain spectral relationships.

Yo = I E Loﬂn(fl...fn)xl(fl)...xn(fn)
S(E~F)...—f )AE .. .df_ (4.13)

Equations 4.3, 4.9 and 4.13 are the relationships which will be used to
develop models which describe system degradation due to equipment nonlineari-
ties. They are the time and frequency domain Volterra series which relate

system output to various order inputs.

Earlier in this section, functional series expansions were
defined in a way which was analagous to the definition of a power series.
To illustrate the application of the Volterra series to a specific problem,
the exact relationship between the Volterra and power series will now be
derived. It will, in fact, be shown that the power series, representing a
nonlinear system with no memory, is a special case of the more general

Volterra analysis.

A nonlinear system with no memory will have nonlinear impulse

responses and transfer functions given by [Signatron, Reference 8]

hn(Tl,Tz...Tn) = ané(tl)G(Tz)...d(Tn) (4.14)

Hn(f f ...fn)= An, a constant (4.15)

19 2’

By equation 4.8, note that a must be identically equal to An for all n.
Equation 4.3 may thus be rewritten by substituting equation 4.14 for hn

y(t) = n§1 [i;..f ané(Tl)G(Tz)...G(Tn)

00
x(t—Tl)x(t-Tz)...x(t-‘l'n)dTl...dTn (4.16)

Using the sampling property of the delta function, 8[ ], to evaluate 4.16
yields the result
y(t) = alxl(t)+a2x.2(:)+... (4.17)
oo
n
L anx (t)

&
n 4=t




; Similarly, substituting equation 4.15 into equation 4.9 yields

1 Ii;... J anx(fl)x(fz)...x(fn)

exp{jZn(f1+f2+.+fn)t}df!...dfn (4.18)

which by definition of multidimensional Fourier Transforms reduces to

y(£) = E ax"(v) (4.19)

Equations 4.17 and 4.19 establish that the Volterra series does reduce to
the power series for a zero memory system, as claimed, which helps explain
! why the classical power series yields accurate results in cases with zero

memory nonlinearities.

A similar analysis of equations 4.3, 4.9 and 4.13 for sinusoidal
inputs will be used in the following sections to develop the models imple-

mented in NONLIN to describe system level nonlinear effects.

4.1.2 The Nonlinear Transfer Function Approach

At this point in the discussion, it becomes useful to introduce
several assumptions and a change in notation which will facilitate the
mathematical manipulations used to simplify equation 4.3.

The first simplification is that the system in question is only

"mildly" nonlinear. '"Mildly" nonlinear is, of course, an arbitrarily

1
defined concept, but will be utilized here to describe a nonlinear system '

i
which is characterized by only th: first few terms of equation 4.3. The

number of terms which must be retained is determined by the rate of con-

vergence of equation 4.3. Thus, if only terms of degree n<N are retained,

input signals will be limited in amplitude to those which allow convergence
of equation 4.3 within the first N terms.

Chea = ew

The second assumption made in this section is that inputs to the
system of interest are sinusoidal.

N

This appears to be a severe ~astriction,
placing limitations on the applicability of equation 4.3 to phenomena which

JET XV

are not sinusoidal {e.g., Gaussian noise, etc.].
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It has been shown, however, that equation 4.3 is valid for completely
arbitrary inputs (Spina reference 4) and the equations derived using sinu-
soidal inputs have also been validated for arbitrary mild nonlinearities.
This restriction is thus a legitimate approximation, which is valid for
the types of inputs to be discussed in the sections which follow, and leads

to the equations from which the models in NONLIN are derived.

Using these two assumptions, evaluation of equation 4.3 is
straightforward, but cumbersome. Therefore, as the equation is simplified,
the notational changes mentioned previously will be introduced to simplify

bookkeeping and computational chores.

The first step in the derivation of the nonlinear transfer
function series is to limit system nonlinearities so that terms of degree
n>N contribute negligibly to the response, y(t). Equation 4.3 is thus

writtean
N
y(t) = y (O)+y, () +. 4y (t) = L,y (t) (4.20)

This situation, where the system is represented as N independent blocks,

each having the common input x(t), is depicted pictorially in Figure 4-1.

The nonlinear transfer function approach is thus seen to repre-
sent the total response of a nonlinear circuit as the sum of N individual
responses. The first order response is characterized by the first order
linear transfer function Hl(fl), the second order response is characterized
by the second order nonlinear transfer function Hz(fl,fz), and higher order

responses are characterized by similar higher order transfer functions.

4.1.2.1 Sinusoidal Steady-State Response of a Weakly Nonlinear System

This section closely follows the discussion in [Spina, Reference 4]
and the reader is referred to Chapter 4 of that reference for a complete mathe-

matical derivation of the results presented here.

To evaluate equation 4.20, the second simplifying assumption will
be utilized, and the input to the system will be represented as the sum of Q

sinusoids Q
x(t) = qél Eq cos(2nfqt) (4.21)

where E_ is complex. If we let E* =E , E =0 and f_=f and note that
i q -q o a -q
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ek

)
cos§ = E‘"E“" (4.22)

then x[t] may be written in the complex plane as

Q

1
x(t) = 7 qé—Q

E j2nf t 4,23
q exp(j q ) ( )
Utilizing this form for the system input, and using equation 3.3 to obtain
the form of the nth order response term yields the result.

Q Q
y () Z (f

= = I ... E....E H Loof
n o0 4y%-Q77 4 =-Q ql qn o ql qn)

exP{jZ"(f41+"‘+fdn)t} (4.24)
This result is stated without proof, but is 1 result which shows

that the application of a sum of Q sinusoids to a mildly nonlinear system
v7ields additional output frequencies generated by the nth order nortion

of the circuit. These additional output frequencies consist of all

possible combinations of the input frequencies f-Q""’fQ’ taken n at a time.
At this point, a notational change is made and the vector m is introduced to

describe a particular frequency mix

m = ves ce 4,

m (m_Q m_;,m, mQ) (4.25)
This vector will represent all possible frequency mixes, since an individual
m, say m, is defined as the number of times fk appears in a particular

frequency mix. The response frequency described by the m vector is thus

2 = - ™'k
k#0

th
For an n order portion of the response, the mk's are constrained such that

=(m)-m_) )£+ (my-m_ )€ (4.26)

Q
K-
k#0

(4.27)
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This, therefore, restricts the possible frequency mixes which may

appear in equation 4.24, while at the same time quantizing all possible mixes.

Now, given a particular vector m, a well known result from
combinatorial analysis states that the number of ways the indices 9y---9,

can be partitioned such that m describes the output frequency (i.e., f

-Q
appears m_Q times, etc.) is given by
(n5m) n! (4.28)
n;m) = i 7 1 .
(m_Q.)...(m_l!)(ml.)...(mQ.)
The general term in equation 4.24 is then seen to be
1 - m_Q _oomy om mQ
= —— *
Yn(t) 2n(EQ*) “'(El ) (El) ---(EQ)
Hn(f-;""f—g’ ";f-l""f-LL "'fQ""fQ{
m_Q times m_l times mQ times
exp{jZﬂ[(ml-m_l)f1+...(mQ-m_Q)fQ]t} (4.29)
Combining identical terms derived from equation 4.29 yields
¥,(0) =3‘_). y, (tsm) (4.30)

which is the equivalent of equation 4.20 given the following assumptions

n n n n
1) L = & ... Z Z ... L
m n_an m_,=0 uL1=0 meO (4.31)
2) Equation 4.27 is satisfied (4.32)
oy o m o= P = M1 T o Mg
3) y, (tm) —;nL?—(E*Q) ) THED LB
H“(f‘Q"'ffgf e fQ...fQ)fxp{jZNfat} (4.33)
m-Q times mQ times
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Equation 4.30, subject to the constraintsl, 2, and 3 above, is the input/output
relationship used in the nonlinear transfer function approach. One further
simplification will be needed to obtain equation .30 in a form which will be
useful for implementation in NONLIN.

4,1.2.2 Two-Tone Sinusoidal Response of a Weakly Nonlinear System

Combinatorial analysis yields the result that, if the excitation

of equation £.30 consists of Q sinusoids, the summation in 4.30 extends over

2Q +n-1)!
M= (n!(23~1;! (4.34)

distinct m vectors. Therefore for a two-tone input, (i.e., Q=2),

_ (4 1!
"7 ee) €39
(41)
Then yl(t) contains 4=—3—— frequency mixes, yz(t) contains 10 mixes, y3(t)

contains 20 mixes, and so on.

Consider, then, a system where terms with n>3 contribute
negligibly to the output. There will then be 34 different frequency mixes
arising from an input of the form

x(t) = Elc052ﬂf1t+E2c082ﬂf2t (4.36)

which may be re-written in the form of equation 3.23;

~j2wf2t - —j2nf1t _ janlt ~ jomf ot

x(t) = % {Ez*e +E, *e +E e +E2e 2 } .37

Substituting equation 4.37 into equation 4.30 yields Table 4-1,

which gives the 34 responses which must be summed to obtain yn(t).

Each of these 34 frequency mixes represents a different nonlinear
response; harmonic generation, intermodulation, desensitization,etc., as seen in
the table. These 34 responses will be utilized in the next section to
illustrate the final modification of equation 4.30, leading to the series

which describes system level nonlinear behavior.
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4.1.3 The Modified Nonlinear Transfer Function Approach

As a prelude to the final simplification to equation 4.30,

consider the fact that the nonlinear transfer functions are, in general,

complex functions which may be written

] 16 (£),6,000)
H (£, f) = ]Hn(fl,fz...fn)le (4.38)

where ¢“ is an arbitrary phase in the complex plane.

Consider, also, that the 34 responses in Table 4-1 occur at

; considerably fewer than 34 frequencies. The total response at each frequency

is thus found by adding all individual responses at that frequency in the

complex plane. This process can be illustrated for a particular case if the
total n<3 response at frequency fl is considered. The responses which must
be summed to obtain the total response may be obtained from Table 4-1, and
are: for n=1 the 1lst response and for n=3, the 4th and 9th responses. Combin-
1 ing these in the complex plane results in Figure 4-2, which is a phasor
diagram showing how the responses are added vectorially to obtain the total

response at fl’ Y(t,fl).

The final simplification of equation 4.30 will involve limiting
the phase of the nonlinear transfer functions to either 0 or m. This is
equivalent to considering the nonlinear transfer functions to be real

functions, as opposed to the complex functions of the Volterra analysis.

Thege functions will be called modified nonlinear transfer functions, due
to their derivation from the complex Volterra functions, and are the
functions used to describe system nonlinearities, where phase information
is generally unavailable. The effect of limiting the transfer function in
this manner will be examined in detail as models describing each of the
individual effects are developed. The first effect to be considered is

desensitization., which is examined in the next section.
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4.2 Desensitization

Desensitization occurs when an interfering signal enters a
receiver with sufficlent magnitude to cause the receiver amplifiers to
operate nonlinearly. This results in the response to the desired signal

being "desensitized" due to the nonlinear operation of the amplifier.

Desensitization can be a serious problem in a complex electromagnetic environ-

ment because its effects are cumulative; i.e., all signals entering the
; receiver RF passband contribute to desensitization, and the resulting nonlinear
operation may cause system degradation even if individual intéerfering

signals cause no problems.

To consider the effects of a third order desensitization, assume
that the system of interest is only mildly nonlinear, and that terms of order
n>3 need not be considered. Assume also that inputs to the system are

voltages, one of which is the desired signal and modulation:

Si(t) = S[1+s(t)] cos w.t (4.39)

while the other is an interfering unmodulated carrier,

Ii(t) =1 cos wt (4.40)
Assuming that noise is negligible, the total input to the system is simply
the sum of the two signals Si(t)+11(t)' This is a two-tone cosinusoidal

input of the form seen in Section 4.1.2.2, and therefore the input/output
voltage relationship may be derived from Table 4 -1. Because of the presence

of s(t), it is assumed the system behaves quasistatically. Similar assumptions

will be made in the discussion of other nonlinear phenomena.

v, (t) = [1+S(t)]SH1(fs) cos w_t 3
3.2 i
+ 21 SH3(fs,fi,-fi)[l+s(t)] cos wst (4.41)
In equation 4.41, it can be seen that the cosine term involving wy has been

eliminated. This arises from the factor of 1/2 in the second term of ] i

equation 4.41. The equation is actually of the form
vo(t) = [1+s(t)]SHl(f8) cos w,t
2
+ 381 Hs(fs'fi"fi)[l+5(t)]°°s wgt cos2 wt (4.42)

415




1
However, since cos2 wit = % + 3 cos Zwit, and since terms involving cos Znit

are eliminated due to receiver selectivity, equation 4.41 correctly describes

the input/output relationship.

Now, collecting similar terms in equation 4.41 yields

v (t) = S[H(£) + %IZH3(fs,fi,—fi)]-[l-!-a(t)] cos u_t (4.43)

This equation represents the transfer functions as complex functions with
arbitrary phase. This relationship is depicted graphically in Figure 4-3.
To obtain equation 4.43 in a form useful for a system level analysis requires
that thesearbitrary phase angles be specified. This specification will
eliminate phase considerations, and involves two assumptions.
1) The linear (desired) portion of the response is entirely
positive real. (i.e., ¢;=0)

2) The phase angle of H, will be limited to values of 0 or T.

3
1f equation 4.43 is to represent desensitization, however, the actual system
output will be less than the linear portion of the response. This leads to
the requirement that ¢3 should be approximated by T, which is equivalent to
the statement that H3, which is actually of the form |H3(fs,fi,—fi)|ej¢3 is

+
an entirely real, negative quantity, due to the fact that e jr__l. Equation

4.43 may be rewritten using this requirement
3.2 ,
vo(t) = S[Hl(fs)- EI H3(fs,fi,-fi)] [1+s(t)] cos wst (4.44)

Using equation 4.44, the effects of desensitization may be expressed as:

ASO So(volts)-Sé(volts)*

N 5 (volts) (4.45)
o o

where So(volts) = desired signal output without interference

S;(volts) = desired signal output with interference

2
So 2 Hl(fs)
AS° ASo
* Since BN dB = 0 corresponds to total desensitization, < dB < 0.
0 o
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Figure 4-3 Phasor Diagram of 3rd Order Desensitization
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as ) 3 H3(fﬂ,f.,—f9
—2 dB = 20 log I°+20 log |> ——"r"—=t (4.47a)
S 2 H, f
o 1 s
H
= 2P_ dBWH+F(f ,f )dBW where F(f ,f )= -20 log L (4.47b)
1 s’ i s’ i 3H, )
= 2P dBmt+F(f ,f_ )dBm
1 s 1
where PIdBm = interfering signal power in dBm

F(fs,f_) = function that represents device characteristics with

1
F(f ,£.) dBm = F(f ,f. )dBW - 60 dB.
S 1 s 1

In equations 4.47a and 4.47b, the impedance is assumed to be

normalized to 1 ohm. The power, P_ in equation 4.47b is assumed to be the

I
avearge interfering signal power. These same assumptions will be utilized

as models to describe the remaining nonlinear effects are developed.

Equation 4.47b may be equated to an interference margin by
AS
expressing —gg-in terms of a reference level. This level will be assumed to
o
be -20 dB [the minimum desensitization] and the interference margin will be
AS
the amount by which —§9 exceeds -20 dB. Expressen mathematically:
° s
Interference Margin = —gg-+ 20 dB (4.48)
o
In order to use equation 4.48 to calculate the effects of

desensitization, it is first necessary to evaluate the function F(fs,fi).

If the change in signal level ASO/So * is known for some reference interfer-
ing signal level (PI*) this may be substituted into equation 4.48 and F<fs’fi)

be calculated. Thus,

AS [*
FUEg £ = -2p %(£)) dBm + ~§9 dB (4.49)
o
Once F(fs’fi) has been evaluated for these specific conditions, the value may be
substituted into equation 4.48 to give an expression for ”(fs,fi) for other

interfering signal levels.

AS [AS
* *
~2 4B = 2P, dBm -2P. (f.) dBm + —2
S I 1''1 ,
s} L "o

dB (4.50)

If the €S04 limits of MIL-STD-461 are used for the reference interfering
AS
signal level and _gg is assumed to be -20 dB, default models given in Table 4.2
o
result. A graph of the CS04 limit may be seen in Figure 4.4.
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C e = A

Table 4~ Default Models for CW Desensitization
(No AGC)
Amplifiers
For interfering signal frequencies outside of the

amplifier pass band; MIL-STD-461 specifies a limit of 0 dBm.
Thirefore for

fI<fL or fI>£H
where f, = lowest operating frequency of amplifier
. fH = highest operating frequency of amplifier
PI dBm = 0 dBm
as s
[s——]dB = -20 dB

()
)
A §;- dB = 2PI dBm -20 dB
Receivers
For interfering signals within the receiver 80-dB
bandwidth the default models are:
1] w
fo-zifpcf ¢+ 3y
where fo = receiver tuned frequency
W = receiver 80-dB bandwidth

®
Py (f,)dBm = Pp dBm + 120 [eog ]

where PR dBm = receiver sensitivity

8s_1*
3-2 dB = -20 dB

o
AS
. 1] ; 320
B [s-;—] 48 = 2P, dBm 2P, dBm - S (£-£,] -20 aB
For interfering signals outside of the receiver 80-dB
bandwidth but within the overall tuning range of the receiver,
models are:

W ¥
fLefycf, -7 or f o+ 3<f < £y

1
where fL = lowest operating frequency of receiver
fH = highest operating frequency of receiver
pI'(fI)dBm = Py dBm + 80 dB

S
PSE]'ds = - 20 dB

’ o - . -
o [;—] dB = 2 P; dBm ZPR dBm - 180 dB

For interfering sisnnls outside of the overall tuning
range of the receiver the models are:

t'l<fL or f1>fl-l
[ ]
Pl dBm = 0 dBm

AS '
(-]
[s—o ] dB = -20 dB

. Jss, 20 d
o [g2[es = 27y amm -20 3
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fo = Receiver tuned frequency or band center for amplifiers.
: £1 = Lowest turable frequency of receiver band in use or tns lowest frequency
of amplifier passband.
! f2 = Highest tunable frequency of raceiver band in use or the highsst frequency
of amplifier passtsand.
W = Bandwidth between the 80 dB points of the receiver selectivity curve as
defined in the test sample's technical requiresents or the centrol plan.
Limito:

1. The limit at A is 20 dB above the input level required to produce the standart
reforence output. (This limit ehall not be used for asplifiers)

2, The limit at B shall be set as follows:
a, Roceivers: O dfime applied directly to the receiver input terminals.
b, Amplifiers: The limit shall be as specified in ths iest sample’s techal™l

requirement or contvol plan. If no limit is defined in the above docuamnts, the
0 ddaw value shall be used.

Figure 4-4 Limits for CSO4
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The preceeding equations are for signals below the automatic
gain control threshold (PAGC)vand for interfering signal power less than the
saturation power level corresponding to the desired signal level and the
frequency separation between the input signals. When the desired signal is
above PAGC’ the gain is reduced proportional to the increase in the desired
signal so that the output remains constant. The gain reduction may be

represented by

AG dB = k(P -P,..)

k = gain reduction fraction assumed to be 1 if all AGC is
applied prior to the nonlinearity

d
]

desired signal level in dBm
= AGC threshold in dBm

o
I

The resulting equation for ASOISo will be

As

o
So dB ZPI dBm - 2(PD~PAGC)+F(fS,fi) dBm (4.51)

Equations 4.50 and 4.51 are valid if only terms of order N<3 must be con-
sidered to represent the transfer function of the nonlinear device. However,
for any more than slight desensitization, higher order terms must be con-
sidered. Higher order terms could be added, but a series to represent the
required circuitry is slowly converging and computation of the coefficients
is, in general, not practical. The effects of considering only third order
desensitization may be examined by considering Figure 4-5, which shows the
effect of phase angle on desensitization. This figure shows that

higher order terms and phase must be considered to accurately predict large
desensitization. In fact it has been shown that the equations given above

are valid only for desensitization of approximately 1 dB (Spina Ref. 4).

One might also represent the device as an ideal limiter, that is,

constant gain for input signals below a saturation t% - ‘'.0ld, and complete
saturation thereafter. By using a Fourier series {w. lows more rapid
convergence) and numerical integration to obtain the co::. .ents, the

input-output relation can be computed.5 The resulting desensitization
] .
(SO/SO) would be:

1
.2 SAT
D 5 arc sin ( I ) for I E-ISAT (4.52)

e Ao bt st it ¢ < o A

3 IIT Research Institute, 3rd Order Intermodulation Study, RADC-TR-67-344,
Rome Air Development Center, Griffiss Air Force Base, July 1967.
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Figure 4-5 Effect of Phase on Desensitization
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ISAT = saturation threshold in volts

1 = jnterfering signal level in volts

This equation describes the desensitization of desired signal as a function
of interfering signal level.

The desensitization may be expressed in dB as:

D dB = 20 loglZ arc sin [1og™" (g, P 1) /20]1] (4.53)

where

PSAT = saturation power in dBm
PI = interfering signal power in dBm.

This discussion of desensitization is of limited use for LEMCAP,
however, due to the lack of accuracy inherent in the approximations involved.
The model is merely included for reference, and as an illustration of the

difficulty of. obtaining accurate results for strongly nonlinear systems.,

4.3 Gain Compression and Gain Expansion

The phenomenon of gain compression/expansion is very similar to
that of desensitization. 1It, too, is a third order effect which saturates
the receiver amplifier stages and causes nonlinear operation. However,
while desensitization is caused by an interfering signal, gain compression/

expansion is caused by the desired signal, which may be of sufficient magni-
tude to cause nonlinear amplifier operatiom.

The equations describing gain compression/expansion are very
similar to those presented in the last section. From Table 4-1, note that
compression/expansion is obtained from n=1, combination 1, and from n=3,
combination 9. It will be assumed that the desired signal is equivalent to

equation 4.39, and that the other assumptions are as described in Sectiomn 4,2.
The input/output equation may then be written

v, (E) = SH (£ )[148(t)] cos w_t + 3 S7H (F ,~€_,€ )

A
[1+s(t)] cos w t (4.54)
which may be written
v (t) = S[H(£) +3 SZH3(fB,-fs,fe)][1+s(t)] cos ut (4.55)
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P

the (+) and (-) arise from phase considerations similar to

In equation 4,55,

those presented in Section 4.2, and refer to gain expansion and compression

# | respectively. This corresponds to considering gain expansion to have a phase
of ¢3 = 0 and gain cowpression to have a phase of ¢3 = 7. This situation,

described by equation 4.55, where the voltage gain is not linear, but varies

with desired signal power, may be seen in Figure 4-6.

At this point it becomes advantageous to consider only gain

compression, since the discussion of gain expansion will be exactly the same,
This will simplify the discussion while the results

— et e

except for the (+) sign.
obtained will be easily adapted to describe expansion effects.

Consider, as in Section 4.2, the ratio

1]
ASO ) So(voltsi Si(volts) (4.56)
So So volts)
- 2_52 H3(fs,fs,-fs) 5 |
4 —-——('T—— (4.57) ]
i (£
and H,(f ,f ,-f)
AS » e
[o] _ 2 2 3 "sg’"'s S "..5,_.
-—s—o' dR = 20 log S~ + 20 log 2 —_——_—Hl(fs) ( Sa)

= 2Pg dBm + F(fs) dBm (4.58b)

An interference margin may be developed, as was done in Section &.2.

Again utilizing a reference value of -20dB, the interference margin may be

written: ASo
Interference Margin = —g—-+ 20 dB (4.59)

[o4

The value of the function, F(fsi,may be evaluated by the same means as in o

Section 4.2. Le (P;) be a reference input power which produces a gain
compression of (—52)*. Then equation 4.59 may be evaluated for F(fg), and
the result substitGted back into equation 4.59. This leads to the expression:

As, B8 4
~— dB = 2P dBm +(——| dB-2P* dBm (4.60)
So s S° 8

Given empirical data for various input signal powers, ?:, default

models for F(f;) may be formulated.

It is possible to include the effects of Automatic Gain Control in
equation 4.60 by noting that the modification needed to descride AGC in
equation 4.60 1s very similar to that found in equation 4.51. Performing this

modification results in
4-24
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As
[+
— dB = ZPS dBm - 2(P_-P, _ )+F(f) dBm (4.61)

o D AGC
which is the equation used to describe 'small signal" gain compression/

expansion in a receiver with automatic gain control.

4.4 Intermodulation

In this section, models used to describe nonlinear intermodulation
effects will be discussed. Intermodulation is the process occurring when two
or more signals mix in a nonlinear device to produce an output at a frequency
which causes performance degradation. Effects which will be discussed in

this section are second, third and fifth order, two-signal intermodulation
products, and three signal, third order intermodulation products. These

effects will be considered for three cases:

1) Intermodulation products generated in a receiver.

2) 1Intermodulation products generated in a transmitter.

3) Intermodulation products generated in a nonlinear metallic

junction.

These will be considered separately because there are several simplifications
which make the examination of transmitter and receiver intermods much less
involved than an examination of products generated in a metallic structure.
The discussion of two-signal, third order intermodulation will be quite
detailed, while the equations describing higher order effects will be extrapo-
lated from the third order, for although a rigorous mathematical derivation
of these effects has been performed, to repeat it here would merely lend
complexity to the discussion without offering any additional insight. The
models used to describe transmitter intermodulation products will be developed
following the Volterra analysis of receiver intermods. Following the develop~-
ment of the effects described above, the models utilized to describe structur-
ally generated intermods will be presented. These equations will be based on
empirical data, since structures cannot be considered mildly nonlinear, which

prohihits da~nription of their effects by a Volterra analysis.




i 4.4.1 Two-Signal, Third Order Receiver Intermodulation Products

The assumptions used in the analysis of third order intermodulation

are the same as those used in the desensitization and gain compression/

expansion analyses with the exception of the representation used for the

I interfering signal. In this section, it is assumed that there are two
i interfering signal components, Il(t) and Iz(t), present at the input of the
{ , nonlinear device. The first interfering signal component is assumed to be
. an unmodulated carrier and the second 1s amplitude modulated. The total
interfering signal is thus represented by
Ii(c) =1

1 ©os w;t +12(l+1(t)) cos wzt (4.62)

For this discussion of third order intermodulation the terms in the nonlinear
transfer function expansion which must be considered are of the form:

v (0) = Si(t)+3si(c)1i(t)+li(t) (5.63)

The nonlinear transfer functions have not yet been included in equation 4.63,
although they are an inherent part of the Volterra analysis. They will be
i included following several simplifying assumptions. This will serve to
simplify the notation considerably, with no loss of generality. The

assumptions are:

1) As has been discussed previously, the Si(t)Ii(t) term contri-
butes to desensitization.

2) The signal at fl is assumed to be nearer the center of the
receiver passband than the signal at f

3) Of the possible third oider responses: {

a) 2f1+f2 i

b) 2f,~f,

; c) 2f2+f1 : 3
d) 2f2-f1

the response, (b), at 2f1-f2 is assumed to be the major interfering signal
component. It is assumed that the others will be sufficiently attenuated by
‘ RF selectivity to be insignificant since they fall farther from the center of : !
the RF passband than does (b). !

=27
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Given assumption 1, equation 4.63 may be rewritten

v, (8) = S (D+I3(e) & .64)

But Ii(t) may be expanded using the binominal theorem:
3 _ .3 2 2 3
(e = [ (0431 (0) T, (£) 431 () 15 (£)+15,(£) (4.65)
Now, making use of assumptions 2 and 3 leads to the input/output relationship
_ 2
vo(t) = si(t)+311(t)12(t) (4.66)

Given that the interfering signal is represented by equation 4 .62, equation
4.66 may be written

v () =S ()43 [Ii cos? Wt L[IH(E)] cos wyt] (4.67)

Making use of the relationship
cos acos b = % [cos[at+b]+cos[a-b]] (4.68)

leads to one term in equation 3.67 at the interfering frequency (2fl—f2):
. 3 2
vo(t) = Si(t)+ 4 1112[1+i(t)] cos(Zwldnz)t (4.69)

If the appropriate nonlinear transfer functions are now added to
the input/output relationship, and if Si(t) is again assumed to be a modulated
carrier, equation 4.69 becomes:

vo(t) = SHl(fs)[1+s(t)] cos wst

3.2

+ 7 1112H3(f1,f1,

The second term in equation 4.70 is the third order intermodulation term.6

-fz)[1+i(t)]cos(2w1-m2)t (4.70)

Higher order terms may also be calculated from the relationships in foot note
6, which will lead to the equations presented in future sections which

describe these high order intermodulation effects.

6 A general expression for the contribution of an nth degree term to a
particular two signal intermodulation product is given by:
© 1f
n! 172
2n-l (a-nG)!(B-na)!nu!nB!

cos[(a-2na)wlti(8-2n8)w2t]

For this case, g+ = n, and n, and ng are zero/positive integers such that
ng< 1/2 aand ng< 1/2 8. If consideration is limited to contributions of
nth degree terﬁg to nth order effects, n, and ng are zero and the above
equation reduces to

at 15 1B
- cos (aw,+ Bu,)t.
™1 41 gt =2

This equation is developed from a combinatorial analysis in Reference 11.
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Returning to equation 4.70, it may be seen that the amplitude
of the third order intermodulation carrier is given by

- (4.71)
Dy, (£) 112H3(f1 1°7%2)
while the intermodulation output power in dBm is given by
= é—
PIM 2Pl dBm+Pz dBm+20 103/5 +ﬂ3(f1,f1,—f2) dB (4.72)

For receivers, it is convenient to express the results in terms
of an equivalent input power level (i.e., in terms of the desired signal level
PD) that is required to produce the same effects in the receiver as the
intermodulation product . The output for the desired signal may be found from

equation 5.70, and is just the magnitude of the desired signal carrier.
Desired signal output power (dBm) = PD dBm+Hl(fs) dB (4.73)

If this desired output power is assumed equal to the intermodula-
tion output power, equations 4.72 and 4.73 may be equated, resulting in
P_dBm = 2P. dBm+P, dBm+20 logj%

L 1 2
H,(f,,f 1»-fy) dB —Hl(fs) dB (%.74)
= 2P1+P2+IMF(fs,fif2)dBm (4.75)

where

IMF(fs,fl,fz) = The intermodulation functional = -20 log !% Ei dBW.
H

With reference to equation 4.74, the equivalent input signal for
intermodulation is a function of the power levels of the two interfering signals,
the nonlinearity factor (20 103,% = k3), and the transfer functionals. The
problem becomes how to evaluate the intermodulation functional [20 log/%

+H3(f1,f1,-f2)-Hl(fs)] for a particular receiver. As was the case with desensi-

tization, it will be convenient to use specific data to evaluate the functional

for a particular set of input conditions.

Intermodulation measurements made in accordance with MIL-STD 461 . 1
or MIL-STD-449C are performed in a manner such that the equivalent intermodula-
tion signal {is equal to the receiver gensitivity, P R’ (i.e., ?DfPR) and the
two interfering signals are equal in amplitude. If this is the case, and if

Pg(fl, 2) is defined as the power required for the signals at fl and f2 to

produce a standard response, then

IHF(fs.fl,fz)- PR-3P§(f1,f2) (4.76)
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Substituting equation 4.76 into equation 4.75 yields the result

= _3pk
PIM dBm 2Pl dBm+P dBm+PR dBm: 3P3(f1,f2) dBm (4.77)

2
Equation 4.77 applies to intermodulation situations where the two signals pro-
ducing the intermodulation do not saturate the receiver front end, and the

resulting intermodulation does not exceed the receiver automatic gain control
threshold. The next problem is to define what happens to the intermodulation

product as the input signals are changed to levels which result in conditions

other than those for which the spectrum signature measurements were performed.

As the input power for one or both of the intermodulation signals
or the desired signal is increased, the resulting signal exceeds the receiver
automatic gain control threshold, the receiver AGC is activated, and the
receiver RF gain is reduced. For this situation, equation 4.77 must be modi-

fied to account for the gain change (AG) resulting from the AGC as shown below.

= ~3P% 7
PIM dBm 2P1dBm +P_dBm +PRdBm 3P3(f1,f2)dBm + AGdB (4.78)

2
In addition, as either of the interfering signals is increased, a

saturation level, P (f) is reached such that additional increases in the

SAT
interfering signal do not result in increases in the equivalent intermodulation
input power. For this condition, the equivalent intermodulation input power

may be represented as shown below:

a) for Pl(f1)>P (f£.);

SAT 1

'pmdsm = 2P, . (f,)dBu+P dBu+PpdBm-3P% (£, ,f,)dBn (4.79)
b) for P,(£))>P , (F,);

P dBm = 2P dBm+P_, (f,)dBm+P dBu-3P§(f, ,€,)dBm (4.80)

Table 4-3 summarizes the third order intermodulation equations for the various

conditions of interest.

Default models based on MIL-STD-461 may also be developed, due to
the assumptions used to arrive at equation 4.77. The (CS03) limit of MIL-STD-
461 specifies that no intermodulation responses shall be observed when either
interfering signal is 66 dB above the level necessary to produce the standard

response, PR. This leads to the requirement:

* =
P3(fl,f2) PRdBm + 66 dB (4.81)
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Table 4--3
Condition
PyPy<Par

PvPacc

PPy Poar

>
PIM PAGC

P1>Poar

<
PZ PSAT

P1<Psar
P> Poar

where IMF(fl,fz) = PR-3P§(f1,f2)
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Third Order Intermodulation Equations

Equation
PIM=2P1+P2+
IMF(fl,fz)
PIM =2P1+P2+
IMF(fl,f2)+AG

P, =2

™ “2PgartEyt

IMF(fl,fz)

=2P_+4P

PIM 1 SAT

IMF(fl,fz)




Substituting equation 4.81 into equation 4.77 leads to the third order MIL-
STD-461 default model:

PIMdBm = 2PldBm+P dBm—ZPRdBm—198 dB (4.82)

2
Equation 4.82 may be related to the IEMCAP Interference margins by noting that

Interference margin = PIMdBm—PR (4.83)

This will lead to the requirement that
Interference margin = 2PldBm+P2dBm—3PRdBm-l98 dB (4.84)

which is the default model utilized within NONLIN.

4.4.2 Second and Fifth Order, Two Signal Receiver

Intermodulation Products

As a continuation of the analysis presented in the previous section,

consider a second order intermodulation product occurring at® frequency flifz.

Extrapolating from equation 4.64 yields the input/output relationship:
= 2 .
vo(t) = Si(t)+Ii (v) (4.85)

Given the assumptions of the previous section regarding signal representations

leads to equation 4.85 being rewritten as:
v, (t) = si(t)+[1+i(t)]1112[Hz(fl,fz)cos(wlwz)t
- 4
+H2(f1. fz)cos(wl—wz)t] (4.86)

0f course, only one of the frequencies, f1+f2 or fl—fz will fall into the

receiver passband, so equation 4.86 will reduce to either of two equations,

corresponding to the (+) and (-) below:
vo(t) = SHl(fs)[1+s(t)]cos wgt
+1 LH, (£ ,4£,) [1+1(t) Jeos(w Hwy) ¢ (4.87)
From equation 4.87, a representation for the intermodulation output power
similar to equation 4.72 may be given:

P ydBm = P dBm+P,dBmt, (£, ,+f,)dB (4.88)

1
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If equation 4.88 is presented in terms of an equivalent input power, a

relationship analogous to equation 4.74 may also pe found:
PIMdBm = PldBm+P2dBm+H2(fl,ifz)dB—Hl(fs)dB + 20 log 2 (4.89)

= P,dBm+P,dBm+IMF(f1£5,) dBm (4.90)

To evaluate the IMF, again assume that the interfering signal powers are equal
to each other and to Pg(fl,fz), the power required to create a standard

response. If this is the case, and if Pm,the receiver sensitivity, is the
standard response, the IMF is given by

= - *}
IMF(fq,£,) P Zp‘f(fl’fz) (4.91)

and equation 4.90 becomes

= -2P%
PIMdBm PldBm+P2dBm+PRdBm 2P2(f1,f2)dBm (4.92)

In a manner analogous to that presented in Section 4.4.1, equation
4.91 may be modified to account for the effects of automatic gain control and

receiver saturation. If these modifications are performed, the equations in
Table 4-4 result.

If the (CS03) limit of MIL-STD-461 is again applied, the second
order intermodulation default model results:

PIMdBm = P1+P2-PRdBm—l32 dB (4.93)

The interference margin as determined by the criterion described in Section 3.4.1
is

Interference margin = PldBm+P2dBm—2PRdBm-132 dB. (4.94)

To examine the effects of fifth order intermodulation, it will be

useful to refer to footnote 6 to obtain the 5th order contribution to the
fifth order effect.

This fifth order effect is assumed to be the only signifi-
cant response. The fifth order term ig:

5 3.2 2
8 Hs(fl,fl,fl,-fz,—fz)1112[1+i(t)] cos(3wl-2w2)t (4,95)

From this, it is a simple matter to obtain the intermodulation carrier amplitude
and the intermodulation output power. These are:

5 3.2
M vo(e) = gHg(E),f),6,-F),-F,) 171, % .9)
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Table 4-4 Second Order Intermodulation Equations

Case Condition Equation
< = +
I Pl’pZ(PSAT PIM PTPZ IMF(fl,fz)
PinPace
< =
I1 Pl’PZ PSAT PIM P1+P2+
PIM>PAGC IMF(fl,f2)+AG

11z PI\P P =P 4P +IMF(f1,f

SAT IM SAT ' 2
PoPear
! = P+ +
Vv P <Pgar Py = PitPgartIMF(E f
Py Poar

= - *
where IMF(fl,fz) PR 2?2 (fl’fZ)
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and
P,dBm = 3P dBm+2P dBm+20 log (3) + 20 log & /2
+H5(f1.fl,f1,—f2,—f2) dB (4.97)
Using the assumption regarding standard responses presented previously yields
5
PoydBm = 3P dBut+2P,dBn+20 log (3) + 20 log 4 3
+H5(f1,f1,f1,—f2,~f2) dB-Hl(fs) dB (4.98)
while evaluation of the IMF leads to
IMF(f) = PR—SPg(fl,fz). (4.99)

substituting equation 4.98 into 4.98 the equivalent intermodulation power may
be obtained

= -5P%
PlMdBm 3P1dBm+2P2dBm+PRdBm SPS(fl,fz) (4.100)
Equation 4.100may be modified to account for the effects of AGC and saturation.

The modifications are very similar to those performed to obtain

Tables 4-3 and 4-4, and these changes lead to the results presented in Table 4-5,

The default model based on MIL-STD-461 is again derived from the
relationship in equation 4.81, and is found to be

PIMdBm = 3P1+2P2-4PRdBm—330 dB (4.101)

From equation 4.101, and the assumptions stated previously, the [
interference margin is found to be:

Interference margin = 3PldBm+2P2dBm-SPR§Bm-330 dB
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Table 4-5 Fifth Order Intermodulation Equations

Case Condition Equation
I Pl ’P2<PSAT PIM=3P1+2P2
PIM<PAGC + IMF(fl,fz)
11 PI’P2<PSAT PIM-3P1+2P2
P Pace +LMF (£, ,£,)+06G
I1I P1>PSAT PIM-3PSAT+2P2
Py Poar +IMF(fl.f2)
v P1<PSAT PIM-3P1 +2PSAT
P2>PSAT +IMF(fl,f2)

where IMF(fl.fz) = PR-SPg(flgfz)
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4.4.3 Three Signal, Third Order Receiver Intermodulation Products

Equations similar to those in previous sections may be developed
for third order, three signal intermods, where the output will be at frequencies
of the form:

- (4.102)
fu = 2 EptEs

Due to RF selectivity, however, all three input signals must be approximately
equal, or they will be attenuated and cause no degradation. Because of this,
and because fIM must also fall in the RF passband, equation 4.102 will be

constrained to frequency mixes such that two of the three frequencies will be
positive. For the purpose of the following mathematical discussion, the
intermodulation frequency will be represented by:

= - .103
fIM f1+f2 f3 (4 )

Based on an analysis similar to that presented in Section 4.4.1, the input/
output relationship may then be expressed by:

3
vo(t) = 5111213H3(f1,+f2,ef3) cos(wl+ Wy~ w3)t (4.104)
From this, it is possible to find the intermodulation output power

PIMdBthldBm+P2dBm+P3dBm+20 logQ2+ﬂ3(fl,+f2,-f3)dB (4.105)

Equating the intermodulation output power and the equivalent desired power
leads to a result similar to equation 4.74.

PIMdBm=P1dBm+P2dBm+P3dBm+20 1ogQ2+ﬂ3(fl,+f2,-f3)dB-ﬂl(fs) (4.106)
=P1dBm+P2dBm+P3dBm+IMF(f1 , f2 , f3) (4.107)

It will again be useful to evaluate the IMF in terms of specific
data, as was done in Sections 4.4.1 and 4.4.2. Given the assumptions of those

two sections, the IMF may be written
IMF(fl,fz,f 3)=PR—3P§(f1,+f2,-f3) (4.108)
which transforms equation 3.107 to

R
The results of incorporating AGC and saturation effects into equation 4.109
leads to the equations in Table 4-6.

PIMdBm-PldBm+P2dBm+P3dBm+P dBm-3P§(fl,+fz,—f3)dBm (4.109)
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Table 4-~6 Third Order, Three Signal Intermodulation Equations

Case Condition Equation
1 P].’P2’P3<PSAT PIM'P1+P2+P3
PriPace FIMF(£,£,85)
11 Pl’P2’P3<PSAT PIM=P1+P2+P3
111 P1>PS AT PIM’PS AT‘D-P 2+P3
PZ’P3<PSAT +IMF(fl,fz.f3)
1v Pl’P2>PSAT PIM-ZPSAT+P3
Py<Pgur +1m‘(£1,£2,f3)

where IMF(f, o£ 2 = P_-3P%(f ,+f —f )
1°72°73 RF3MVr 2 3
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There are no MIL-STD-461 limits for three signal intermodulation

products. For the purpose of developing default models, however, it will be
*

assumed that the three interfering signal powers are each egqual to P3(fl,+f7,

-f3), which in turn is the power 66 dB above the power Pr which causes the
standard response.

= - - l
PIMdBm PldBm+P2dBm+P3dBm ZPRdBm 198 dB (4.110)

This is the default model which will be utilized by NONLIN, which has been
extrapolated from the (CS03) requirements of MIL-STD~461. Again, it is

possible to express equation 4.110 in the form of an interference margin as:

Interference margin = PldBm+P2dBm+P3dBm-3PRdBm-198 dB (4.111)

4.4.4, Transmitter Intermodulation Products

In addition to the intermodulation products generated in receivers
discussed in previous sections, products may also be generated in the nonlinear
portions of transmitters. Due to the nature of transmitter nonlinearities,
however, Volterra techniques are not the appropriate analytical tool for use
in the study of transmitter intermods. Instead, the intermodulation output
power, which propagates from one of the interfering transmitters to the
affected receiver is of the form (See Reference 15)

PIMdBm = PLodem—A dB -B log Af% (4.112)

where

PLO“ = the lowest interfering signal power

Af%Z = the average percent difference of incoming
transmitter frequencies from the mixing
transmitter frequency

A,B = constants which must be determined for

each transmitter and each product.

Based on equation 4.112, default models may be formulated for use in NONLIN.
These models are:
e Third order, two signal or three signal
1) If AfZ<1%: A=10,B=0
PIM-PIdBm-IO dB
2) If Af%>1%: A=10, B=20

PIM-PIdBm—BO log AfZ -10 dB
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e Fifth order, two signal
1) If Af%<1%: A=30, B=0

PIM = PIdBm -30 dB
2) 1f Af%>1%: A=30, B=30
PIM = PIdBm -30 log Af%Z -30 dB

e Second order, two signal
Due to the nature of transmitter nonlinearities,
second order, two signal intermodulation products are
insignificant. This may be seen by considering the
intermodulation output frequency

£y = £1#E, (4.113)

It is obvious that at least one of the frequencies
fl,f2 or fIM will always be outside the transmitter
operating band, which will cause the power at the

out-of-band frequency to be attenuated to such an

extent that the product is insignificant and causes

no system degradation.
For reference, the default models for all receiver and transmitter inter-
modulation products are presented in Table 4-7.
4.4.5 Structurally Generated Intermodulation Products

In addition to the receiver and transmitter intermodulation products H
]

discussed in the last three sections, it is possible for products to be gener-

ated in the nonlinear metallic junction between two structures. An example of
this effect would be the generation of intermods at an interface between a
rusted piece of metal and an unrusted piece. Since this problem often occurs
at such an interface, it has been traditionally referred to as the "rusty bolt"
problem. Major intermods generated at this type of junction will be second

and third order, two-signal intermods, and three signal, third order intermods.

As stated previously, the highly nonlinear nature of this type of

junction precludes a Volterra analysis. For this reason, the models used to
describe structurally generated products are entirely empirical in nature, and

may be described by the equation
PIMdBm = PLodem-A dB -B log (Af%) (4.114)
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Table 4-7 Intermod Default Models

Order Receiver Transmitter*
2(2 sig) PIM = P1+P2—PR—132 dB -
3(2 sig) PIM = 2P1+P2-2PR-198 dB PIM = PI -10 dB

or PIM = PI -10 dB

=30 log Af(%Z)

3(3 sig) PIM = P1+P2+P3-2PR-198 dB Same as above
5(2 sig) PIM = 3Pl+2P2-4PR-330 dB PIM = PI -30 dB

or PIM = PI -30 dB

-30 log Af(Z)

* The first equation for each order corresponds to Af(%)<1X%.
The second is for Af(%)>1%.
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As was the case in previous sections, PLOW will be the lowest power incident

on the junction, and A and B will be constants which must be determined for

various orders of intermodulation for each junction.

Utilization of equation 4.114 necessitates determination of all
intermodulation frequencies which could cause degradation. For this reason,
the frequency simplifications of previous sections may not be utilized, and

many more frequency combinations must be considered. These are enumerated

in Table 4-8.

Table 4-8 Structurally Generated Intermodulation
Output Frequencies

Order Frequencies Number
2(2 signal) tﬁltfz ‘ 4
3(2 signal) +2f _+f
~""1="2 8
i?fzifl
3(3 signal) iflifsz3 8

A default model based on equation .1ll4 has been developed for structurally
generated intermodulation products and is
PI

MdBm = PLodem-lo dB (4.115)

In equation 4.115, it is assumed that the junction is very wideband, eliminating
the frequency dependent term (i.e., B=0). It is also assumed that since the

products are all low order, the default model will be the same for all orders

and frequencies.




4.5 Cross Modulation

Cross modulation is the term used to describe degradation caused
by the transfer of modulation from an intérfering signal to the desired signal.
Cross modulation is similar to desensitization (discussed earlier) in several

ways which will bear on the following discusssion. The similarities are:

1) Cross modulation is treated as a third order effect

2) Cross modulation may be considered a nonlinear
phenomenon which occurs at intervals corresponding
to increased interfering signal levels. This
situation is depicted in Figure 4-7, where the

{ desired signal is an unmodulated CW and the
i

interfering signal is a pulse modulated CW.

Based on the preceding similarities, the discussion of cross
modulation will closely follow that of desensitization except for the repre-
sentation of the interfering signal, which is assumed to be an amplitude
modulated carrier, with modulation such that i(t) is less than one. }

Ii(t) = I[14+i(t)] cos wit 4 .116) {
Then, referring to Section 4.2, one may obtain the input/output relationship

v (8) = 8 (435, ()13(r)
| Expanding the expression Ii(t),

, If(:) = 12[1+21(:)+12(:)][-21' + % cos 2w, t]

e

(4.117)

(4.118) ?

el i e -
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Figure 4-7 Pulse Modulation of an AM Signal
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Again, as in the case of the desensitization analysis, terms involving cos 2w

t
will be removed by filtering.

i
Therefore, the significant terms in the output
are

v (6) = S[Hl(fs)+%{2H3(fs,-Ei,fi)[l+21(t)]](1+s(t))cos Wt (4.119)

In equation 4.119, the term involving iz(t) is second order and is insignifi-

cant with respect to the remainder of the expression. Now, carrying out the

multiplications in equation 4.119, and eliminating terms with second order
modulation, the relation in equation 3.119 may be written
_ 3 2
vo(t) = S[[HI(fs)+§H3(fs;fi’ fi)I 1[1+s(t)]
+H3(fs,ff—fiﬂ31 i(t)]]cos wst

(4.120)
which may be written
_ 3 2.,
vo(t) = Slﬂl(fs)+iﬂ3dg,fi,-fi)1 ]
Py (Egefymtp 1’
[1+s(t) + = 3 7 21(t)]cos w_t (4.121)
B EHHy(Eg, 8 -E T

Equation 4.121 is the expression for an amplitude modulataed sic¢nal

where the modulation consists of a combination of the desired and iatertering

signal modulations, s(t) and i(t). If the modulation component result.-; “com

the interfering signal modulation is restricted so that the maximum =«uplitude

of the modulation signal is less than or equal to the amplitude of the carrier,

overmodulation is avoided.7 In this case, the nonlinearity should not cause

significant distortion of the modulation.

7. In order to avoid overmodulation, it is necessary that:

2
3/2 1°H. (f ,f,,~-f.)
ms + 3's’ 1 i l

3 Zmi <1,
Hl(fs)+3/2 I H3(fs,fi,-f

D

where m and m, represent the maximum values of s(t) and 1(t).
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One measure of the effect of cross modulation is provided by the
i ratio of the sideband component resulting from the desired signal to the side-
band component resulting from the interfering signal. The resulting ratio

which is termed the "cross modulation ratio" (CMR), is expressed in terms of

L and o, (the maximum values of s(t) and i(t) as:

2
[H, (£ )+3/21°H (f ,f.-£.)Im
OMR = 1''s 3''s’i "1 Tg

2 (4.122)
[3/2T°H4(f, £ ,~f )] 2m,

Expressing the ratio in terms of m_ and my

measure when similar modulation is present on both the desired and interfering

provides an effective

signals. If the types of modulation on the two signals are significantly
different, it may be desirable to use some other measure of the amplitudes

(such as the RMS levels).

If the desired and interfering signals are limited to '"small
signal" conditions such that

2
- &

Hl(fs) >>3/21 H3(fs’fi’ fi), (4.123)

the cross modulation ratio may then be written:
Hl(fs)ms
CMR= 2 (4.124)
31 H3(fs,fi,-fi)m1
or
Zm (4.125)
CMR dB = -ZPIdBm+Hl(fs)dB-H3(fs,fi,—fi)dB =20 log 5;;

where P_I = {nterfering signal power in dBm

Equation 4.125 assumes that the major cross modulation is of third
order origin and results in an amplitude modulation effect. If both the desired

and interfering signals have the same modulation characteristics (i.e., ms-mi),

the last three terms of equation 4.125 are functions of the gain, selectivity,
and nonlinear characteristics of the device under consideration. For conveni-
ence, these terms may be represented by a single functional, CMF(fI), which is
referred to as the cross modulation function. Thus

CMR dB = —ZPIdBm+CMF(fi,fs)dBm (4.126)
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Equation 4.126 1is valid for desired signals below the automatic
gain control threshold (PAGC) and for interfering signal powers less than the
saturation power level corresponding to the desired signal level and the fre-
quency separation between the input signals. When the desired signal is above
PAGC’ the gain is reduced proportional to the increase in the desired signal

so that the output remains constant. The gain reduction may be represented by

B =k(p -
AG dB =k (PP, (o)

k = gain reduction fraction(=1 since all AGC occurs prior to
nonlinearity)

D desired signal level in dBm
AGC = AGC threshold in dBm

v
ol
| L[}

The resulting equation for the cross modulation ratio will be

CMR dB = —2PIdBm —2(PD-PAGC)+CMF(fI)dBm (4.127)

When the interfering signal becomes large, the nonlinear device
will saturate. Beyond this level, if the desired signal is constant, changes
in the interfering signal level do not produce corresponding changes in the
signal-to-interference ratio. As a first approximation of the signal-to-
interference ratio for PI greater than the saturation level, PSAI’ the satura-
tion level may be substituted for the interfering signal level. Therefore

CMR dB = -2PSAT+2(PAGC-PD) +CMP(fs,fi) (4.128)

The equations for cross modulation effects are summarized in Table 4 .9.

Table 4-9  Summary of Equations for Cross Modulation

Case Conditions Equation

T Py <Pgar Pp<Ppce CMR = -ZPI*CMF(fs‘fi)

II PI < PSAT' Py 2 pAGC CMR -2Py +2(PAGC-PD)0CMF(fs,fi)

Iv
"

I Py > Pguq Pp 2 Pyge MR = -2Pguq +2(Ppgc-Pp)sCNF (£, f

¢

v
4

IV Py 2 Pgaps Pp < Ppoe  CMR = -2Pg, ¢ CMF (£ .f))
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In order to use the equations tor cross modulation, it is necessary
to specify a value for the cross modulation functionmal. If the cross modulation
effects are specified for a given interfering signal level, P%(fl)dB, the cross

modulation functional may be evaluated as follows:
CMF(fI)dB = 2P¥(f1)d8m+CMR*dB (4.129)

where CMR*dB = cross modulation ratio resulting

from reference interfering signal.

The limits for conducted susceptibility resulting from cross
modulation are specified in MIL-STD-461 (CS05). If these limits are used the

following default models shown below result.

From MIL-STD-461, the interfering ignal power will be

66 dB above some standard reference, assumed to be the receiver sensitivity,

so
Pf(fl)dBm = PRdBm+66dB (4.130)

and

CMR*dB = 0 (4.131)
Then the CMF may be written

CMF*dB = 2PRdBm+l32dB (4.132a)
and the default model is

CMR dB = -ZPIdBm+2PRdBm+132dB (4.132b)

It is possible to define an interference margin for cross
modulation in much the same manner as the desensitization interference margin
was defined. The interference margin will be defined as the amount by which
the CMR exceeds a reference of -20 dB, the minimum observable cross modulation

Equation 4.132b may then be written using this criterion.
Interference Margin = CMR dB + 20 dB (4.133)

The equations just presented describe modulation of a desired AM
signal by an interfering AM signal. Expressions similar to those in Table 4-9
willbe derived for other types of cross modulation.

For interfering signals other than full carrier, double sideband
AM, another approach is used to evaluate the cross modulation signal-to-
interference ratio. This approach still correlates cross modulation with
desensitization, but from a different point of view. Large signals entering a
receiver cause desensitization, that is, gain reduction to the desired signal.
If the bandwidth of the RF stages of a receiver is large enough, the gain re-
duction will follow the amplitude variations of the interfering signal and in
this manner impart the unwanted modulation to the desired transmission.
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Using this hypothesis, a modulation index, analogous to the AM
modulation index, can be computed from the desensitization information. The
expression for modulation index of an AM signal in terms of maximum and minimum

instantaneous signal amplitude is

-S
= omax_min _ 8o/Sq (4.134)
L smax+smin Z—ASO/S
As °
where —gg-is defined in Section .2, and:
o mi = modulation index
max = maximum instantaneous signal amplitude
min minimum instantaneous signal amplitude

Since the CW signal now has modulation on it, the signal-to-
interference ratio is the ratio of the carrier amplitude to the sideband
amplitude.

S/1 = 20 log(mi) (4.135)
Suppose instead of CW carrier, the desired signal has been amplitude modulated,

then the sideband-to-sideband ratio would be

m
S/1 = 20 log (%) (4.136)
i
where
m, = desired signal modulation index
m, = equivalent interfering signal modulation index.

Equation 4.136 is the cross modulation signal-to-interference model chosen for
single sideband interference to AM receivers, when my is computed by equation
4.134. The desired signal modulation index for AM signals is proportiomal to
the total power in the modulation sidebands. Actually, the fraction of total
power in the sidebands equals ms/2. Equation 4.136 can be modified to describe
single sideband interference to a single sideband receiver

if one considers that for this type of desired signal, all the power is
contained in the information sidebands. Equation 4.137 expresses the cross
modulation signal-to-interference ratio for SSB interference to SSB

receivers.

S/T = 20 log (2/mi) (4.137)
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Equation 4.137 could also model pulse interference to AM receivers except that

the interference appearing at the audio output of the receiver is proportional
to the average power because, normally, the pulse bandwidth is consid.rably
larger than the receiver last IF passband. A bandwidth correction factor is

needed, also. The signal-to-interference ratio from cross modulation due to

DU

pulse interference is

m
) S/T = 20 log(=*)-10 10g(T£,)-10 log (TAfy) (4.138)
' i
j where
: T = pulse width (seconds)
! f_ = pulse repetition frequency (pps)
' Af3 = receiver overall 3-dB bandwidth.
This can be seen if we examine the relationship of S/Ipeak’
given by equation 4.134, to S/Iavg’ the desired ratio for pulse modulation of
AM receivers. S/I will equal S/I minus the correction factors described
avg peak

above, since the factors affect the interference power, which is in the de-

nominator of equation 4.138. Therefore
m Af3

S/1,,q = 20 log ;f ~20 log T -10 log F (4.139a)
i But since
- 20 log % = 20 log Tf_ (4.139b)
r ! and
f 10 logA_:3_ = 10 log AfyT -10 log Tf (4 .140)
r

S/Iavg is then seen to be the expression given by equation 4.138. This situa-
tion, were the interfering pulse width is much greater than the receiver band-

width, is seen in Figure 4-8.
By applying the same rationale that was employed to arrive at

‘ equation 4.137, from the expression of single sideband interference to an AM

receiver, an expression of pulse interfereace to single sideband receivers is

given by equation 4.141.
S/1 = 20 log(z/mi) -10 log(Tfr) -10 Tog(TAf3) (4.141)

By applying the same logic used to obtain the form of the inter-

ference margin in Equation 4.133, all of the signal to interference ratios

e ——————— g e

in this section may be expressed as interference margins using the relation-
ship:
Interference Margin = % dB + 20 dB (4.142)
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Figure 4-8 Pulse Modulation of AM Receivers
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This section has presented equations describing third order cross
modulation of many signal types. Threenotable signal combinations were exluded
from consideration, however, based on the reasons given below:

1) FM cross modulation is not considered since the frequency i
information in an FM signal is not adversely affected by
cross modulation amplitude variations. In addition, since
most FM receivers have some sort of amplitude limiting,
the cross modulation fluctuations would be undetected.

2) Pulse modulation of pulse signals is deemed insignificant
since cross modulation between pulses depends on their
simultaneous occurrence. Considering typical pulse duty
cycles, this simultaneous occurrence is highly unlikely,
and was not considered in this analysis.

3) Cross modulation of pulse signals is deemed insignificant
because it does not usually result in degradation of these

types of receptors.

4.6 Spurious Responses

A spurious response in a superheterodyne receiver arises when
an interfering signal, (or one of its harmonics) enters a nonlinear mixer
and combines with the local oscillator frequency of the mixer (or one of its
harmonics) to produce a "spurious" output which falls into the receiver IF
passband. This can be a serious problem due to the large amplitude of the

local oscillator signal which can mix with even small interfering amplitudes ]

to produce system degradation. A diagram of a typical superhetrodyne receiver, i
with three stages of nonlinear mixing may be seen in Figure 4-9. For the
first mixer in Figure 4-9, assume the interfeting signal (or omne of it's
harmonics, denoted by q) passes through RF preselection and amplification
with sufficient amplitude to enter mixer number one. When mixed with the
first L0 frequency (or one of it's harmonics, denoted by p), the output

frequency will occur at

four = PiLotafgpyr (4.143)

In order to produce degradation, fOUT must be within the first IF passband of

the receiver. This will encompass a range of frequencies denoted by
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Therefore, degradation will occur for a range of interfering frequencies such

that

_Ppifroitfip? Afppy)

fspur 9 (4.145)

Now, given that equation 4.145 holds at each mixer, the requirement
that fSPUR causes interference in a triple conversion receiver leads to the
requirement that
2o L02 Py o3t (Frpst Afppy)
SPUR  q * 49, * 9,9,9

1 172 17273

p f
£ 2

(4.140)

where the final output must be within the final IF output passband.

From equations 4.145 and 4 .146, it is obvious that the interfering
signal need not be near the center of the receiver RF passband to cause
degradation and may, in fact, be greatly attenuated prior to mixing with the
large amplitude local oscillator frequency. This leads to two observations
regarding spurious responses.

1) Since the spurious response frequency need not be in the

RF passband, it will be the only nonadjacent channel
effect considered in NONLIN. This will introduce an
additional cull at each interfering frequency.

2) Due to the large signal nature of local oscillator signal

(typically ~1 volt compared with an RF input
to the mixer with amplitude on the order of lmV),
the modified Volterra analysis presented previously is not
applicable to the study of spurious responses.
As a result of these observations, the algorithms used to describe spurious

response interference will be considerably different from the algorithms used

in the Volterra analysis. These differences will now be examined in more
detail.

Assumption (1) states that the spurious responses need not be an
adjacent channel effect. If the interfering signal is nonadjacent channel,
however, it is assumed that the RF attenuation is such that only first mixer
generated responses will cause degradation. The second and third stages will

be assumed to provide only direct IF feed through (i.e., normal mixing).
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These two observations, coupled with the large signal local oscillator (allow-
ing large values for pl) will lead to nonadjacent channel spurious responses
being quantified by

1st mixer: p; = user defined range

q, = user defined or ql=l default
2nd mixer: P, =4, = 1
3rd mixer: Py = 43 = 1

If the interfering signal is adjacent channel it will experience
considerably less RF attenuation than a nonadjacent channel signal. Therefore,
Py and 9 will be allowed to take on a range of values determined by the user.
As may be seen in Figure 4.10, however, higher order mixes require very high
input signal levels to cause degardation. It is thus deemed advisable to
limit the second and third mixers to values of p and q which are equal. As
seen from Figure 4.10, this will result in an output near the IF frequency,
which will pass relatively unattenuated to the next receiver stage. Using the
above assumptions yields the adjacent channel response quantization.

1st mixer: p; = user defined range

9

user defined range

2nd mixer: Py =4, = 1, 2,3

3rd mixer: Py = 43 = 1, 2, 3.

Observation (2) will now be used to describe the response at the
frequencies given above.

Because of the large signal nature of the local oscillator, an
alternative to the Volterra analysis is needed to describe system degradation
due to spurious responses. NONLIN will describe spurious responses in terms
of piecewise linear response curves. For q = 1 these response curves will be

of the form

PéRdBm =1 logp+J (4.147)

In general, I and J must be determined for each particular receiver under
consideration. In fact, it is often necessary to consider that the power
needed to produce a response will have a different linear relationship in
different receiver frequency intervals. This will necessitate determination

of other values for I and J for additional frequency intervals in the receiver

passband . 455
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Equation 4 .147 will hold only in the non-adjacent channel region. In the

adjacent channel region, the response will be of the form:

f
PSRdBm I log r +J

(4.148)
o

The spurious response powers in equations 3.147 and 3.148 may be
related to the interference margin by noting that the interference margin is

just the actual interfering signal level minus PSR'

The piecewise linear equations which quantize the response as a
function of p for q = 1 are of the form given in equation 3.148., Analagous
results for other values of q will also have a piecewise linear relationship.
In general, however, the constants I and J will be quite different from those
for the q=1 responses, and must be determined for each receiver from experi-

mental data.

As a rule of thumb, experimental data has shown that the q = 2
responses will be approximately 15 dB below the q = 1 responses, and the q = 3,
4 responses will be on the order of 20 dB below the q = 1 responses. These
values will be utilized as default values in NONLIN in the absence of more

complete user specifications.

The piecewise linear model described above has been validated
completely and is discussed in detail in references 2 and 13. This model may
be used to formulate default equations for spurious responses based on the
€S04 1limits of MIL-STD-461 (see Figure 4-4). The defaults will be formulated
by assuming that the response, PSR’ will be a signal of the form seen in
Figure 4-4. This assumption will then be utilized to solve for I and J in the
various regions of interest. If this is done, the defaults in Table 4-10 will
result. The equations in Table 4-10 describe the response if q=l. As stated
previously, PSR (in the region outside the 80 dB bandwidth) will be 15 dB
lower if q=2 and 20 dB lower if q = 3 or 4. Inside the 80 dB bandwidth region,
the default equations for higher values of q will be the same as the g=1
equation in Table 4-10.

4-57

dcamilisis




Table 4-10 Default Models for Spurious Responses

For Interfering signals within the receiver 80 dB bandwidth

W W
fo T2 ifINT S‘fo + 2
160
PgpdBm = PpdBm + == [£-f ]

For interfering signals outside the receiver 80 dB bandwidth but within the

overall tuning range of the receiver

R R

=
=
rh
+

PSRdBm = PRdBm + 80 dB

For interering signals outside the tuning range of the receiver
>
e <fL °f fne > By

PSRdBm = 0 dBm

where

P

fo = receiver tuned frequency
W = receiver 80 dB bandwidth

PR = receiver sensitivity
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5.0 NEW MODEL FOR PORT SPECTRA

The new port spectra model consists of a n«Jly designed algorithm
to replace the current 'quantization” method in IEMCAP for modeling a port's

spectra. The following features are incorporated in the new model:

e Generate Equipment Frequency Table

e User Specified Frequency Range for Analysis
(C to 50 GHz and greater)

o User defined port spectra of up to 90 frequency -
amplitude points for required and/or nonrequired
frequency ranges

e Generate frequencies and amplitudes for prestored
emitter and receptor models required by User's inputs
currently required by IEMCAP

o Generate frequencies and amplitudes for harmonic
signals as directed by User inputs currently
required by IEMCAP

® Generate frequencies and amplitudes for any port's
nonrequired spectra using prestored MIL-STDS (4614,
6181D and 704) and the corresponding system

displacement factors.

Each of these features are discussed with regard to the present IEMCAP capability

and then the developed replacement technique and models arc described.

The equipment frequency table is generated by IEMCAP based on input
data cards associated with keywords "FREQ" and "FQTBL." The FREQ card provides
the lower (fl) and upper (fu) frequency limits, number of frequencies per
octave and the maximum number of frequencies (nmax) for the equipment. The
FQTBL card(s) contains user specified frequencies (in ascending order) for the
equipment. Using these data, the IEMCAP determines the total number of fre-
quencies (up to nmax) that are to be generated by the program for the equipment.
The program geometrically spaces the program generated frequencies over the

total frequency range (f1 to fu)' The equipment frequency table is then
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determined beginning with fl. The next frequency is the lessor of the first
program generated frequency or the first user specified frequency on the FQTBL
card(s). This process is repeated up to and including the upper frequency
limit (fu) of the equipment. The subroutine FTGEN generates the equipment

frequency table.

FTGEN with subroutine FTSRCH establishes the appropriate table
frequencies to be used on each port of the equipment. The port frequency
range is presently based upon the MIL-STDS. For example, an RF emitter port
under MIL-STD-461 has a frequency range of 14 kHz to 18 GHz. FTGEN selects

the appropriate table frequencies to encompass this range.

The specified frequency range for IEMCAP is 30 Hz to 18 GHz.
These frequency limits are based on the frequency limits associated with the
MIL-STDS. Each of the different port types (i.e., RF, Signal/control, etc.)
has an assigned receptor and emitter frequency range. A user may specify a
frequency range less than the above, e.g., 30 Hz to 10 GHz, 14 kHz - 1 GHz,
etc. and the port frequency ranges will be adjusted accordingly. A user may
not specify a frequency range greater than the above, i.e., frequencies <30 Hz

or greater than 18 GHz are not permitted.

IEMCAP has an option for user defined port spectra. This option
allows a user to specify the required frequency range portion of a port's
spectra. Up to ten amplitude-frequency pairs may be specified at the input
level. These spectra will be used in place of a prestored model to represent
the required frequency region of a port. When specifying a port spectra, an
emitter's spectra are input in broadband units and a receptor's spectra is

defined in terms of narrowband units.

To generate frequencies and amplitudes for prestored emitter and
receptor models, the IEMCAP requires certain user inputs. The user lnputs may
consist of both time and frequency domain parameters. With the user sgpecified
data, the program determines the appropriate spectra via the spectra model
routine. The spectra model routine consists of several subroutines which pro-
vide both emitter and receptor spectra in both the required and nonrequired
frequency ranges. The required frequency range models are frequency domain,
asymtotic expressions of the modulation envelope of a signal process. The non-~
required frequency range models consist of the various MIL-STDS that are pre-

programmed in the IEMCAP,.
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A user is free to choose the frequency representation of a port in

several ways as discussed above. However, the IEMCAP uses a "Quantizing

technique" which may provide a distorted representation of a given prestored
model or a user input spectrum (SPECT) on a port if the frequencies are not
chosen in a judicious manner. Quantizing consists of choosing the maximum

(emitters) or minimum (receptors) values within the frequency intervals

i established by the program for the equipment. Thus, the peaks and nulls

; associated with the quantized spectra will be shifted in frequency from the

E , original spectra. The user must choose his frequency representation with care

: ! for an accurate representation. An acceptable procedure for determining the

[ frequency represcntation of a model is presented in RADC-TR-78-140 (Paul).(l)
This procedure is quite adequate for the present IEMCAP to implement but it
requires considerable effort on the part of the user. A user must determine
the frequencies required to represent a given model and then enter these
frequencies via the FQTBL card(s) discussed above. This procedure must be
performed for each port of an equipment. Similar techniques are used for the 4

nonrequired frequency range modeling.

5.1 Generation of Equipment Frequency Table

i To generate the equipment frequency table each port of an equipment

will be examined for fundamental, tone and harmonic frequencies where applicable.
Using these frequencies and the prestored model data the remainder of the port
frequencies will be generated. Included in the port frequencies will be transi-

tion frequencies between required frequency range models and nonrequired fre-

quency range models and the upper and lower frequency limits of the required
frequency range. The new procedure for generating the equipment frequency

table will be based upon the following.

® Prestored Model (Required)

¢ Fundamental Frequency (fc)

e Tone Frequencies (ft)

o Frequencies of the intersect points of
asymtotic expressions of model (fI)

e Fundamental frequency plus one-half the ]

{
bandwidth of the channel (fc + Egg) .

® Fundamental frequency minus one-half the

bandwidth of the channel (fc - §¥§)
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e MIL-STDS (Nonrequired)
e Lowest port frequency (fl)
e Frequencies at intersection points

of model (change in slope) (fI)

BWC

o £ -5 -0.00L (f)
BWC

° fc+ 2 + 0.001 (f+)

. ———————y -+ e ——

e Highest port frequency (fh)

; e Harmonic Frequencies*

e Harmonic Frequency (nfc)
° n(fc + BL;(_:)

. n(fc - =
° n(fc + =5~ + 0.001
. n(fc - ‘2‘) - 0.001

e User Specified Frequencies

The above procedure has been applied to each of the prestored models in IEMCAP,

and the number of frequencies needed to define each model is shown in Table 5-1.

The following example of RF emitter radar model with a rectangular pulse will

desmonstrate how the numbers in Table 5--1 were derived.

* For CW BWC = 1 and only three frequencies

Simhiiiiiibed.




e o ————

Table 5-1 Number of Model Frequencies

No.Harmonic| Total Pre-
Prestored Model Frequencies| stored and MIL-STDS
Port Number For 9 Har- | Harmonic
Type Name Frequencies| monics 461-A | 6181D
Ccw 1 27 28 4 4
PDM 5 45 50
NRZPCM 5 50
BPPCM 5 50
PPM 4 49
TELEG f=0 7 52
TELEG f.¥0 8 53
FSK 4 49
PAMFM 3 48
RADAR-TPZD 6 51
RECTPL 5 50
RF COSOD 4 49
EMITTER GAU'SS 3 48
CHIRP 9 54
AM-VOICE 6 51
CVOICE 7 52
NONVCE 5 50
DSBSC-V 5 50
DSBSC-CV 6 51
DSBSC-NV 4 49
LSSB-V 5 50
LSSB CV 6 51
LSSB~NV 4 49
USSB-V 5 50
USSB-CV 6 51
USSB-NV 4 49
FM 5 J 50
LOLKG 2 d 47 v v
PDM 3 N/A 3 5 4
NRZPCM 3 3
RPPCM 3 3
PPM 4 4
TELEG £.=0 3 3
TELEG ft)‘O 3 3
SIGNAL PAM 5 5
CONTROL ESPIKE 3 3
EMITTER RECTPL 3 3
TPZD 3 3
TRIANG 3 3
SAWTH 4 4
DMPSIN 5 5
VOICE 5 5
CVOICE 6 6 L 4
EED NONE NONE NONE NONE NONE
CASE NONE NONE NONE ) 7
POWER 1 2 3 5 3
N/A RF-2 RF-2
3 3 s/c-2 s/C-2
RECEPTOR TRIANG CASE-6 CASE-b
TPZD 4 4 POWER 4 | POWER-4
5-3
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The radar rectangular pulse representation in IEMCAP is the

following:
- Pr2 .

2, (2'M)2 .
Pap!!! = Prity (-AT) 181y <l af(<af

where
7 = pulse duration

fB = bit rate

2
bandwidth = —
T

Af B
M nT

Af= t—f,

P = peak power

Figure 5~1 shows the frequency domain representation of the above

- rrdyy

2
2 i‘l
Paatt = Pritg | —

e

Figure 5-1 Radar Rectangular Pulse




From Figure 5-1 and recognizing that the required range is BWC (bandwidth of
channel) wide, the prestored model (required) frequencies are

fc’(fct Afm)’ (fci-gggo
Thus, a total of 5 frequencies are used for the Radar Rect pulse in the re-
quired frequency range. To determine the nonrequired frequencies, the MIL-STDS
are used. The nonrequired frequencies are:

BWC
£ kEt =5 £0.001), £

Only four frequencies are used for the MIL-STD for this example because the
specification for the radar pulse (RF) is a constant over the total frequency
range (excluding the harmonics). The harmonic frequencies are specified by
the following:

BWC BUC
nf , (n(f + =), {n(f+ =7 + 0.001]

Five frequencies are used per harmonic and a total of 45 frequencies will be

required if 9 harmonics are to be specified (the maximum number allowed by
TEMCAP) .

5.1.1 Frequency Table Generation Routine (FTGEN)

The above procedure for generating the equipment frequency table
can be integrated into the IEMCAP by replacing the pregent FTGEN routine. The
new FTGEN routine will utilize the equipment port data to generate the equip-
ment frequency table. The frequencies will be determined from prestored
models, harmonics, user specification, mulitary standards and/or combinations
of any or all of these models. For prestored models (including Military
Specifications) this routine generates frequencies at the interaction points
(changes in shape for straight lines) in the model. The lower and upper
frequency limits for the required frequency range model will be determined by
the bandwidth of the channel as specified on the input data. The lower and
upper frequency limits for Military Specifications are specified in the
particular standard. Transition frequencies between the various models will
be determined by the routine. Once the set of frequencies (<90) has been

determined they are ordered in ascending order as required by the IEMCAP.
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‘ 5.1.2 Frequency Range for Analysis g

The specified frequency range of analysis is determined by

{

{ prestored table values for each port type. The frequency limits ‘are

! established according to the model capability limits programmed into the

; IEMCAP. The prestored table values are contained in arrays FMIN and FMAX of
! the FTGEN subroutine. The values assigned to FMIN are the lower frequency

) limit for each port type. The FMAX values are the upper frequency limit

: assigned to each port type. The absolute values assigned to these arrays

are established via the "DATA FMIN/, FMAX/ STATEMENT" in subroutine FTGEN.

A lower frequency limit for a port should be greater than 0 Hz.
The preferable lower frequency limit is 1 HZ. However, values close to zero
may be used (e.g., 0.5, 0.75, etc.). The upper frequency limit of a port

should be set to the maximum allowable value which is consistent with the

IEMCAP modeling.

5.2 Generation of Port Spectra Amplitudes

f The port spectra amplitudes are computed from prestored emitter

i and receptor models, harmonics, user specified data and prestored MILITARY
STANDARDS models. Various combinations of these models may be used in deter-

mining the spectrum of a given port. The new SPECT option provides the

following capability for representing a port's spectra:

e Specification of total spectra (both narrowband and
broadband) with up to 90 frequency-amplitude pairs
e Specification of required spectra with up to 90

frequency-amplitude pairs

o Specification of nonrequired spectra with up to
90 frequency~-amplitude pairs

e Specification of a portion of the total spectra
contiguous in frequency (Required spectra may not
be split between SPEC and prestored models, i.e.,
if it is desired that any part of required spectra be
input, then all required spectra must be specified for
this option)

—
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Thus, with the New SPECT option the user has considerably more flexibility

for representing the port spectra. The options available for an RF emitter

port are shown in Figure 5-2. Figure 5.2 shows the RF emitter port representation
for both a required model (MODSIG # SPECT) and a user specified model (MODSIG=
SPECT) option. For both of these options the nonrequired models and harmonics

are utilized as shown in Figure 5-2

The signal and control emitter port types are similar to the RF
emitter port representation with the exception that there are no harmonics to
be considered. Therefore, Figure $-2 is representative of the signal and control

emitter ports exclusive of the harmonic designations.

The emitter power port representation is similar to the RF emitter
port except the required frequency range model is only a single frequency,

i.e., the frequency of the power signal.

Both the emitter and receptor case port spectra may be represented

as shown in Figure 5~3 Auser may specify all or a portion of the case port

spectra and the remainder will be represented by a MIL~STD. A case port has

only a nonrequired frequency range.

The options for an RF receptor port are shown in Figure 5-4, As
shown in this figure, there are several options available for combining pre-
stored models (both required and nonrequired) and user specified data. Other
receptor port types (signal, control, case and power) may be represented in
a similar manner.

The EED port type is unchanged from the present capability provided
by IEMCAP.

5.2.1 Calculation of Port Spectra Levels

In order to determine the level for a given port frequency of an
equipment, the various user options discussed above have been incorporated in the
spectra level calculation. Each port of an equipment is examined for

prestored model selection and/or user specified data.
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6.0 INTEGRATION OF THE FOUR TASKS WITH THE IEMCAP

The objective of the subject contract was to increase the prediction
capability of the IEMCAP. The increased capability was to be derived from the

following four tasks:

(1) Antenna Out-of-Band Radiation Characteristics Models

(2) Nonaverage Power Sensitive Receptor Models

(3) Nonlinear Effccts Modeling

(4) Port Spectra Representation Modeling
A detailed discussion of the modeling effect for each of these tasks is
presented in prior sections of this report. The following subsections present

the methods and locations of the interface with the IEMCAP,

6.1 Modifications to IEMCAP Logic Flow

The IEMCAP is divided into four sections as shown in Figure 6-1.
As shown in the figure the four sections are: 1) Initial Processing Routine,
2) Wire MAP Routine, Specification Generation and Comparative EMI Analysis
Routine and 4) NONLIN Routine. These sections are executed independently
(i.e., separate programs) with various intermediate data storage files (disk
or tape) as previously defined and used by IEMCAP. The program sections can
be run in succession or executed in tandem. For systems with no wire, the
second section can be omitted. This four section approach provides considerable
flexibility in executing the new IEMCAP. As before, the first and second
sections (for systems with wire bundles) can be run independently until data

errors have been eliminated before running the analysis sections (TART and NONLIN).

A brief description of the functions performed by each program
section is given below. The overall philosophy of the IEMCAP has been
maintained and emphasis placed on segmenting program sections to keep down

computer main memory requirements.

The first section of IEMCAP remains the IDIPR with the same
purpose as before except the wire map routine has been removed. The input
decode routine reads and decodes the free-field input data from punched cards
and checks the data for errors. All processing remains the same as that per-

formed before the modifications to the program.

With the input cards properly processed, the initial processing
routine performs data management, interfaces with the spectrum models and
generates the working files. All prior functions performed by the initial
processing routine are maintained.
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The second section of IEMCAP, called the Wire MAP Routine (WMR),
is the same as the WMR of the previous IDIPR routine. WMR generates cross
reference map arrays for use by the wire coupling models of TART. The WMR
was set up as a separte program for two reasons. First, removal of WMR from
the IDIPR reduces the computer main memory requirements (approximately 20K
words) for IDIPR. Thus, allowing some flexibility in the memory requirement
of the new IDIPR with modifications for the above tasks. Secondly, removal
of WMR from the IDIPR provides more flexibility for analyzing non-wire systems.
The second section is only required if the system under analysis contains wire

bundles.

The third section of IEMCAP, TART, performs the same functions as
that performed before the modifications to the program. The four tasks per-

formed by TART are:
e Specification Generation

e Baseline System EMC Survey
e Trade-off Anlaysis
e Waiver Anlaysis
These tasks remain the same as defined in the IEMCAP documentation.

TART is composed of two basic routines (Figure 6-1). The Speci-
fication Generation Routine (SGR) performs the first task above and the
comparative EMI analysis routine (CEAR) performs the other tasks. Both
routines interface with the coupling models to compute transfer ratios

between emitter and receptor ports.

The fourth section of IEMCAP, called the Nonlinear Effects
Modeling Analysis Routine (NONLIN), uses the data compiled by IDIPR to perform
the desired analysis task. The tasks performed by NONLIN are 1) nonlinear
effects due to equipment nonlinearities and 2) nonlinear effects due to

structurally generated intermods.

If only structurally generated intermods are to be examined, the
SGENIM Routine is utilized. SGENIM interfaces with the coupling routine to
generate system degradation due to nonlinear metallic junctions.
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For nonlinear effects associated with electronic equipment, the
program proceeds into the NOSGIM routine. The NOSGIM routine uses the non-
linear analysis data from IDIPR (working files) to determine which nonlinear
effects models are appropriate in the analysis. NOSGIM interfaces with the

coupling model routine to compute the transfer ratios between emitter and

receptor ports.

A discussion of the new IEMCAP organization and overall logic flow
was presented in Section 6.0. In this section, the major routines are
identified and discussed to show the modifications to IDIPR and TART.

The WMR and NONLIN sections are not discussed in this section.

The WMR remains the same as presented in prior IEMCAP documentation. Therefore,

no further discussion of WMI is warranted. For NONLIN, the major routines

are identified and discussed in the program documentation report. ;

6.1.1 Modifications to IDIPR

&
The IDIPR consists of three basic programs. Figure 6-2 shows the 3
overall logic flow through them and identifies the basic functions and data

files used by each. The three subprograms are the Input Decode Routine
(IPDCOD), Initial Processing Routine (IPR) and the Spectrum Model Routine
(SPCMDL). The basic operation of these routines remains unchanged and will

not be presented here. The remainder of this section discusses the modifica~

PSSP

tions to these routines. The actual coding modifications are presented in the

program documentation report of the various tasks with IEMCAP,

6.1.1.1 Input Decode Routines

The Input Decode Routine (IPDCOD) performs the functions defined
in Figure 6.2. Modifications to IPDCOD consisted of changes to read new input
cards, increased arrays for storing the new data, modifying read and write
statements, and elimination of the capability for handling wire bundles.

The specific routines involved are presented in the appropriate

sections discussing the interface of the tasks with IEMCAP in the program
documentation.
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6.1.1.2 Initial Processing Routine

The IPR functions are as specified in Figure 6-2. No new functions
were added to the IPR but essentially all of the functions were modified. The
formatting for reading input data files was modified to accommodate the new
input data required by the tasks on this effort. A new frequency generation
subroutine was added to IPR to generate the equipment frequency table. The
SPECT option on input data was modified and a new procedure was developed for

generating the required and nonrequired port spectra.

6.1.1.3 Spectrum Model Routine

The SPCMDL routine functions are as shown in Figure 6-2. These
routines compute required and non-required spectra for emitters and receptors
using mathematical models. The techniques used to obtain these spectra by the
present IEMCAP is referred to as the "Quantization of Port Spectra". This
technique has been replaced with the new procedure described in Section 5.0.
The routines associated with SPCMDL remain essentailly the same in number and
name or designation, but several routines were redesigned to elminate the
quantization technique and accommodate the new port spectra representation.

The requied and nonrequired port modeling philosophy was retained.

6.1.2 Modifications to TART

The TART consists of two basic programs. Figure 6~3 shows the
overall logic flow through them and identifies the basic functions and data
files used by each. The basic subprograms are the Specification Generation
Routine (SGR) and the Comparative EMI Analysis Routine (CEAR). The coupling
Path Routine (CPR) and Analysis and Spectrrum Adjust Routines are support
functions for the basic subprograms. The overall operation of these routines
are unchanged and thus the basic philosophy will not be presented here. Rather,
the remainder of this section is devoted to discussing the actual modifications
that were made to incorporate the various tasks assoclated with this effort.
The actual coding modifications are presented in the sections pertaining to
the interface of the four tasks with IEMCAP in the program documentation.

6-8

e




Mmoo el G
’ POENL o wnve - - . .
:

| (et )
!

READ SYSTEM
ANO RUN CONTROL
DATA

i |

READ TART CONTROL
B AND ADUITIONAL INPUT
IF REQUIRED

WORKING
FILES

EMTR
F ——

EGPT
QA

r--——-——-

| ) J ‘
‘ PR R COMPARATIVE EMI i
: SPECIFICATION GENERATION : Tl @ \
1 AQUTINE (SGR) -.1 “NAL‘:EESA:?U Ve ‘ ]

[ [

BASELINE

TRANSFER
FILE

< ] y

P T e S G G T = G e G

WRAP-UP ROUTINE COUPLING ANALYSIS
J (GENERATES ISF PATH AND SPECTRUM ;
WITH UPDATED ROUTINE ADJUST ROUTINES ]
SPECTRA)

e M - .-

Figure 6-3 TART Section of IEMCAP Top Level Functional Flow

6-~9




|

|

B

:

¢

ANTENNA-COUPLED

WIRE -TO-WIRE

CASE-TO-CASE

TRANSFER FUNCTION TRANSFER FUNCTION TRANSFER FUNCTION it ALY
EVALUATION ROUTINE EVALUATION ROUTINE EVALUATION ROUTINE A MODE LS
(ACTFER) (WTWTFR) (ICTCTFR) )
ANTENNA PATTERN
MODELS (GAIN)

VEHICLE PROPAGATION
MODELS

GROUND PROPAGATION
MODEL

FIELD-TO-WIRE
MOODEL (FTw)

[ 3

Figure 6-3 (Continued)




6.1.2.1 Specification Generation Routine

No modifications were made to the Specification Generation Routine SGR.

6.1.2.2 Compartative EMI Analysis Rout{gg

CEAR performs the Baseline survey, Trade-off and Waiver analysis

tasks of the IEMCAP. This routine was modified to handle the nonaverage power
sensitive receptor models discussed in Section 3.0. CEAR was originally
designed to perform the above tasks using average power as the criteria for
determining EMI conditions. Hence, with the new requirements of the non-
average power sensitive receptor task, CEAR must be able to handle interactions

between various receptors with different susceptibility criteria.

6.1.2.3 Analysis and Spectrum Adjust Routines

The analysis and Spectrum Adjust routines are utilized by CEAR
to perform the various functions required to obtain the EMI margins. The basic '
operation of these routines had to be modified to include the new suscepti-~

bility margins defined in Section 3.0. The models for total energy, peak

current/voltage and bandwidth were added to these routines.

6.1.2.4 Coupling Path Routine

No modifications were made to the Coupling Path Routine CPR.

6.2 Interface of Antenna Out-of-Band Characteristics Models

The antenna out-of-band characteristics task was designed to d
provide an improved antenna model within the IEMCAP. Because of the complexity

and large variations in parameters associated with an antenna type, it is not

recommended that the antenna out-of-band characteristics modeling be implemented i
in IEMCAP at this time. Rather, it is recommended that additional effort be .

expended in this area to futher refine the developed models.

6.2.1 Interface with IDIPR _
None
6.2.2 Interface with TART
None
:
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6.3 Interface of Nonaverage Power Sensitive Receptor Models

To implement the nonaverage power sensitive receptor modeling
described in Section 3.0, several existing subroutines of the IEMCAP were
modified. Both the IDIPR and TART Sections are affected by these modifications.

6.3.1 Interface with IDIPR

The interface with IDIPR for the nonaverage power semsitive

receptor models involves the input data requirements discussed in the User's
Manual. The portion of the IDIPR affected by the input data includes the IDR,

IPR and the SPCMDL. Subroutines modified in the IDR are

CARDIN

PIFRIT

ALPSEL

DUPCHK

SSINIT

STORE

PARCHK

The modified IPR subroutines include:

ISFRIT

FTGEN

SPCMDL

SSINIT

MERGE

Within SPCMDL the modified routines are:
e LOGLIN
o SCARFE

Flow diagrams of each of the above subroutines with the appropriate

modifications are presented in the program documentation.

Several additional subroutines within IDIPR required some
minor modifications. These modifications include items such as array dimen-
sions, read and write statement formatting, elimination of frequency intervals,
DO LOOP subseripts, etc. The routines effected by these minor changes are:
e READEQ
e REPORT
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WFRIT
SCARFE
SCARFR
M461
M6181
o M704
6.3.2 Interface with TART

, Since the TART section of IEMCAP performs the analyses, the
‘ subroutine interfaces will include additional data requirement and the new
models for the nonaverage power sensitive receptors. The portion of the TART
affected by the input data in the CEAR. Subroutines modified in CEAR are:
e CEAR
EMCASA
TORS
EMTRD
RCPTRD
EMINTS

Flow diagrams of each of the above subroutines with the appropriate

modificatons are presented in the program documentation.

6.4 Interface of the Nonlinear Effects Models

The nonlinear effects modeling has been designed to utilize the
IDIPR section of the IEMCAP to input the necessary data required by the NONLIN
section., That is, the IDIPR performs the necessary processing of the data
requirements for NONLIN in the same manner as the data requirements for the
linear (TART) section of the IEMCAP. Thus, it is a requirement that IDIPR be

run before a NONLIN analysis is to be performed on a system.

6.4.1 Interface with IDIPR

To obtain the input data described in Section 4 of
this report, the data must be read off cards, decoded, and stored in arrays
and working files. The same basic technique is used for inputting data for

NONLIN as presently exists in IDIPR. Thus, several of the routines described
in Section 6.2 are applicable for the NONLIN input data requirements. The
IDIPR routines involved are repeated here for convenience.
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Subroutines modified in the IDR are:

e CARDIN
e PIFRIT
e ALPSEL
e DUPCHK
e SSINIT
e STORE

e PARCHK

The modified IPR subroutines include:

e ISFRIT
e SSINIT
e MERGE

Flow diagrams of each of the above subroutines with the appropriate
modifications are presented in the program documentation report.

6.4.2 Interface with TART

There is no interface with TART for NONLIN.

6.5 Interface of Port Spectra Representation

The interface of the port spectra representation modeling is
involved with 1) removal of the port spectra quantization technique,
2) generation of the equipment frequency table, 3) establishing new frequency
limits for the defined ports and 4) incorporating a replacement algorithm for
the quantization technique. To incorporate these changes into IEMCAP required
several modifications to existing subroutines in the IEMCAP.

6.5.1 Interface with IDIPR

The interface with IDIPR for the port spectra representation
model involves the input data requirements discussed in the User‘'s Manual. The
portion of the IDIPR affected by the input data includes the IDR, IPR and the
SPCMDL. Subroutines modified in the IDR are:

e CARDIN
e PIFRIT
e ALPSEL
e DUPCHK
e SSINIT
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e STORE
e PARCHK
The modified IPR subroutines include:
e ISFRIT
e FTGEN
e SPCMDL
e SSINIT
Within SPCMDL the modified routines are:
e LOGLIN
e SCARFE

Flow diagrams of each of the above subroutines with the appropriate

modifications are presented in the program documentation report.

Several additional subroutines within IDIPR will require some i
minor modifications. These modifications include items such as array

dimensions, read and write statement formatting, elmination of frequency ]
intervals, DO LOOP, subscripts, etc.

changes are:

The routines affected by these minor

READEQ
REPORT
WFRIT

SCARFE
SCARFR i
Mé61 f ’
M6181 i
M704 "

6.5.2 Interface with TART

As a result of the change in the SPECT option associated with the _
port Spectra representation, a change in the integrated margin calculation was i
needed. Since a user may now specify the narrowband spectra for an emitter,
it follows that the integrated margin calculation should include only thase
spectra specified by the user, that is, the IEMCAP method of integrating over

bandwidth would provide an extremely "worst case” result. Thus, several

At mae e I

routines within TART were modified to provide an integrated margin for narrow-

band specified spectra. For narroband spectra, the integrated margin is |
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computed by summing the average levels (delta functions) over the specified
frequency range. Subroutines modified in TART to provide this capability are:
e EMINTS
e TORS.

Flow diagrams of each of the above subroutines with the appropriate

modification are presented in the program documentation report.
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